

Montage-, Inbetriebsetzungs- und Gebrauchsanleitung

für geschlossene ortsfeste Blei-Säure-Batterien

Montage-, Inbetriebsetzungs- und Gebrauchsanleitung für geschlossene ortsfeste Blei-Säure-Batterien

Satz, Gestaltung, Druck: PRIOTEX Medien GmbH, 59929 Brilon

© 2013 HOPPECKE Batterien GmbH & Co. KG Postfach 1140 D-59929 Brilon

Alle Rechte, auch für den Fall von Patent- und Gebrauchsmusteranmeldungen, vorbehalten. Weitergabe sowie Vervielfältigung dieser Dokumentation und Verwertung oder Mitteilung ihres Inhalts sind nicht gestattet, soweit nicht ausdrücklich in schriftlicher Form von HOPPECKE Batterien GmbH & Co. KG zugestanden. Zuwiderhandlungen verpflichten zu Schadenersatz.

Montage-, Inbetriebsetzungs- und Gebrauchsanleitung für geschlossene ortsfeste Blei-Säure-Batterien 7140203150 V1.4 (09.2018)

Vorwort

Sehr geehrte Kundin, sehr geehrter Kunde,

vielen Dank, dass Sie sich für ein Produkt aus unserem Hause entschieden haben.

Bevor Sie Tätigkeiten im Zusammenhang mit den Blei-Säure-Batterien ausführen, bitten wir Sie, diese Dokumentation aufmerksam und in Ruhe zu lesen. Sie enthält wichtige Informationen zum sicheren und fachgerechten Auspacken, Lagern, Installieren, Inbetriebsetzen, Betreiben und Warten von Blei-Säure-Batterien. Das Nichtbeachten der Sicherheitshinweise kann zu schweren Personen- und Sachschäden führen. Für mittelbare und unmittelbare Schäden, die aus unsachgemäßem Umgang resultieren, übernehmen wir keine Haftung und es erlischt jeder Gewährleistungsanspruch.

Inhaltliche Änderungen dieser Dokumentation behalten wir uns vor. HOPPECKE Batterien GmbH & Co. KG haftet nicht für etwaige Fehler in dieser Dokumentation. Eine Haftung für mittelbare Schäden, die im Zusammenhang mit dem Gebrauch dieser Dokumentation entstehen, ist ebenfalls ausgeschlossen. Unsere Produkte werden ständig weiterentwickelt. Daher können Abweichungen zwischen den Darstellungen in dieser Dokumentation und dem von Ihnen gekauften Produkt bestehen.

Bitte bewahren Sie diese Dokumentation so auf, dass sie für alle Personen, die Tätigkeiten im Zusammenhang mit den Batterien ausführen müssen, sofort zur Verfügung steht.

Sollten Sie Fragen haben, wir helfen Ihnen gerne weiter. Sie erreichen uns unter der E-Mail-Adresse info@hoppecke.com

oder telefonisch an Arbeitstagen zwischen 8.00 und 16.00 Uhr unter

Telefon +49(0)2963 61-0 Fax +49(0)2963 61-481.

Ihr Team von HOPPECKE Batterien GmbH & Co. KG

Postanschrift:

HOPPECKE Batterien GmbH & Co. KG Postfach 11 40 D-59929 Brilon

Anschrift Zentrale:

HOPPECKE Batterien GmbH & Co. KG Bontkirchener Straße 1 D-59929 Brilon-Hoppecke Telefon +49(0)2963 61-0 Fax +49(0)2963 61-449

Internet www.hoppecke.com
Email info@hoppecke.com

Verwendete Symbole

Nachfolgende Sicherheitshinweise sind zu berücksichtigen. Die aufgeführten Sicherheitssymbole werden in dieser Dokumentation bei sicherheitsrelevanten Hinweisen teilweise mehrfach verwendet:

Es besteht Gefahr für die Gesundheit von Personen, für die Batterie(n) oder die Umwelt. Nichtbeachtung dieser Gefahrenhinweise kann schwere oder sogar tödliche Verletzungen zur Folge haben.

Gefahr!

Es besteht Gefahr für die Batterie(n), für Gegenstände oder die Umwelt. Mit Gefahren für Personen ist nicht zu rechnen. Nichtbeachtung kann zu Störungen und Beschädigungen der Batterie(n) führen. Weiterhin können Sachbeschädigungen und Umweltschäden entstehen.

Gefahr durch Explosion, Druckwellen, herumfliegende heiße oder geschmolzene Substanzen. Explosions- und Brandgefahr, Kurzschlüsse vermeiden!

Elektrostatische Auf- bzw. Entladungen/Funken sind zu vermeiden!

Nichtbeachtung dieser Gefahrenhinweise kann schwere oder sogar tödliche Verletzungen zur Folge haben.

Verätzungsgefahr durch austretenden Elektrolyt Elektrolyt ist stark ätzend!

Gefahr durch elektrische Spannungen für das Leben und die Gesundheit von Personen. Achtung! Metallteile der Batteriezellen/-blöcke stehen immer unter Spannung. Deshalb keine fremden Gegenstände oder Werkzeuge auf der Batterie ablegen.

Nichtbeachtung dieser Gefahrenhinweise kann schwere oder sogar tödliche Verletzungen zur Folge haben.

Warnung vor Gefahren durch Batterien

Rauchen verboten!

Keine offene Flamme, Glut oder Funken in der Nähe der Batterie, da Explosions- und Brandgefahr!

Allgemeines Verbot

Gebrauchsanweisungen beachten und im Batterieraum sichtbar anbringen! Arbeiten an Batterien nur nach Unterweisung durch Fachpersonal.

Bei Arbeiten an Batterien Schutzbrille, Schutzhandschuhe und Schutzkleidung tragen!

Die Unfallverhütungsvorschriften sowie DIN EN 50110-1 und IEC 62485-2 (stationäre Batterien) oder IEC 62485-3 (Antriebsbatterien) beachten.

Leitfähiges Schuhwerk tragen.

Allgemeines Gebot

Montage-, Inbetriebsetzungs- und Gebrauchsanleitung für geschlossene ortsfeste Blei-Säure-Batterien 7140203150 V1 4 (09 2018)

Säurespritzer im Auge oder auf der Haut mit viel klarem Wasser aus- bzw. abspülen. Danach unverzüglich einen Arzt aufsuchen. Mit Säure verunreinigte Kleidung mit Wasser auswaschen.

Bleisäurebatterien die nicht dem Recyclingprozess zugeführt werden, sind unter Beachtung aller Vorschriften als Sondermüll zu entsorgen.

Allgemeiner Hinweis oder Hinweis für das bessere Verständnis und die optimale Nutzung der Batterie(n).

0 Sicherheitshinweise

0.1 Allgemeine Hinweise

Nicht bestimmungsgemäßer Gebrauch der hier beschriebenen Produkte kann zu Personen- und Sachschäden führen.

Bei nicht bestimmungsgemäßen Gebrauch übernimmt HOPPECKE weder Verantwortung noch Haftung für direkte oder indirekte Personen- und Sachschäden, die aus dem Umgang der hier beschriebenen Produkte entstehen.

Explosions- und Brandgefahr, Kurzschlüsse vermeiden.

Elektrostatische Auf- bzw. Entladungen/Funken sind zu vermeiden.

Achtung! Metallteile der Batterie(n) stehen immer unter Spannung, deshalb keine Gegenstände oder Werkzeug auf der/(den) Batterie(n) ablegen!

Elektrolyt ist stark ätzend! Im normalen Betrieb ist das Berühren mit dem Elektrolyt ausgeschlossen. Bei der Zerstörung des Gehäuses ist der freiwerdende gebundene Elektrolyt genauso ätzend wie flüssiger. Säurespritzer im Auge oder auf der Haut mit viel klarem Wasser aus- bzw. abspülen. Danach unverzüglich einen Arzt aufsuchen!

Mit Säure verunreinigte Kleidung mit viel Wasser auswaschen.

Austretender Elektrolyt ist gesundheitsschädlich für Augen und Haut!

Ohne ordnungsgemäße und regelmäßige Wartung der Batterien durch HOPPECKE-Fachpersonal(oder von HOPPECKE autorisiertem Personal) ist die Sicherheit und Zuverlässigkeit der Stromversorgung im Notfall eventuell nicht gewährleistet.

Achtung!

Arbeiten an Batterien, insbesondere deren Installation und Wartung, darf nur durch geschultes HOPPECKE-Fachpersonal (oder durch HOPPECKE autorisiertes Personal) durchgeführt werden, das sich im Umgang mit Batterien auskennt und die erforderlichen Vorsichtsmaßnahmen kennt.

Batterien niemals mit Staubwedel oder trockenen Tüchern aus Kunstfaser reinigen. Gefahr von elektrostatischer Aufladung und Knallgasexplosion! Wir empfehlen für die Reinigung leichte feuchte Baumwoll- oder Papiertücher.

5

Folgende Baureihen bietet HOPPECKE als geschlossene Blei-Säure-Batterien an:

OPzS

power.bloc OPzS

max.power

OGi bloc

grid | power v x (GroE)

grid | power v м (OSP.HB/OSP.HC)

grid | power v H (OGi bloc/OSP.XC)

sun | power v L (OPzS solar.power/OPzS bloc solar.power)

Die Produktbezeichnung der HOPPECKE Batteriebaureihen wurden geändert. In der nachfolgenden Übersicht finden Sie die jeweiligen Entsprechungen alter und neuer Namen. In diesem Dokument werden die alten Namen in Klammern hinter den neuen Namen aufgeführt.

Alt	Neu
GroE	grid power vx
OPzS bloc solar.power	sun power v L
OPzS solar.power	sun power v L
OSP.HB	grid power v м
OSP.HC	grid powervm
OSP.XC	grid power v н

Nachfolgende Symbole und Piktogramme sind auf jeder Batteriezelle bzw. jedem Batterieblock abgebildet:

Betriebsanleitung für Montage, Inbetriebsetzung und Betrieb beachten.

Beim Umgang mit Batteriezellen/-blöcken Schutzbrille tragen.

Offene Flammen und Funken vermeiden.

Warnung vor einer Gefahrenstelle.

Gefahr durch elektrische Spannung.

Verätzungsgefahr durch austretenden Elektrolyt.

Explosionsgefahr. Kurzschlüsse vermeiden.

Batterie mit geringem Antimongehalt.

Altbatterien mit diesem Zeichen müssen dem Recyclingprozess zugeführt werden.

Altbatterien, die nicht recycelt werden können, müssen unter Beachtung aller Vorschriften als Sondermüll entsorgt werden.

0.2 Sicherheitshinweise zum Arbeiten mit Blei-Säure-Batterien

Beim Arbeiten an Batterien die Sicherheitsregeln nach DIN EN 50110-1 (VDE 0105-1) "Betrieb von elektrischen Anlagen" beachten. Das bedeutet unter anderem:

- · Richtige Arbeitsreihenfolge beim Ein- und Ausbau sowie beim Anklemmen an das Ladegerät einhalten.
- · Polarität beachten!
- · Auf festen Sitz der Anschlüsse achten.
- · Verwenden Sie nur technisch einwandfreie Ladekabel in ausreichenden Querschnitten.
- · Batterien dürfen nicht an- oder abgeklemmt werden, während Strom fließt oder das Ladegerät
- · Vor dem Öffnen des Ladekreises durch Spannungsmessung den abgeschalteten Zustand des Ladegerätes überprüfen.
- · Ladegerät gegen Wiedereinschalten sichern!
- · Betriebsanleitungen des Ladegeräteherstellers beachten.

Es besteht u.U. die Gefahr durch elektrische Batteriespannung und im Falle eines Kurzschlusses können extrem hohe Kurzschlussströme fließen.

Es besteht Explosions- und Brandgefahr durch Knallgas.

Beachten Sie folgende Vorschriften (IEEE Standards gelten nur für USA):

- ZVEI-Merkblatt "Vorsichtsmaßnahmen beim Umgang mit Elektrolyt für Bleiakkumulatoren".
- ZVEI-Merkblatt "Sicherheitsdatenblatt für Batteriesäure (verdünnte Schwefelsäure)".
- VDE 0510 Teil 2: 2001-12, entspr. IEC 62485-2: "Sicherheitsanforderungen an Batterien und
- Batterieanlagen Teil 2: Stationäre Batterien". - DIN EN 50110-1 (VDE 0105-1) Betrieb von elektrischen Anlagen; Deutsche Fassung EN 50110-
- IEEE Standard 484-1996: "Recommended Practice for Installation Design und Installation of Vented Lead-Acid Batteries for Stationary Applications".
- IEEE Standard 485-1997: "Recommended Practice for Sizing Large Lead-Acid Storage Batteries for Generating Stations".
- IEEE Standard 450-2002: "Recommended Practice for Maintenance, Testing and Replacement of Vented Lead-Acid Batteries for Stationary Application".
- IEEE Standard 1375-1998: "Guide for Protecion of Stationary Battery Systems".

Die Batterie enthält ätzende Säure, die im Havariefall zu Verätzungen der Haut und der Augen führen kann!

Setzen Sie unbedingt eine Schutzbrille auf, wenn Sie mit Batterien arbeiten! Tragen Sie bei Arbeiten an Batterien die vorgesehene persönliche Schutzkleidung!

1. Bei der Erneuerung alter Batterien ist sicherzustellen, dass vor Beginn der Demontage der alten Batterie die Zuleitungen freigeschaltet wurden (Lasttrenner, Sicherungen, Schalter). Dieses hat durch schaltberechtigtes Personal zu erfolgen.

- Gefahr!
- 2. Legen Sie Uhren, Ringe, Ketten, Schmuck und sonstige Metallgegenstände beim Arbeiten mit
- 3. Benutzen Sie ausschließlich isoliertes Werkzeug.
- 4. Tragen Sie spannungsisolierende Handschuhe und Sicherheitsschuhe (siehe auch Kap. 2.2).

5. Legen Sie niemals Werkzeuge oder Metallteile auf Batterien!

Gefahr!

6. Stellen Sie sicher, dass die Batterie(n) nicht irrtümlich geerdet ist/sind. Sollte dies der Fall sein, unterbrechen Sie die entsprechende Verbindung. Das unbeabsichtigte Berühren einer geerdeten Batterie kann einen schweren elektrischen Schlag zur Folge haben. Dieses Risiko kann durch Beseitigung der Erdverbindung erheblich reduziert werden.

7. Bevor Sie Anschlüsse herstellen, prüfen Sie die korrekte Polarität lieber einmal zu viel als einmal zu wenig!

8. Gefüllte Blei-Säure-Batterien beinhalten hochexplosives Knallgas (Wasserstoff-Sauerstoff-Gasgemisch). Niemals in unmittelbarer Nähe von Batterien rauchen, mit offenen Flammen hantieren oder Funken erzeugen. Vermeiden Sie unbedingt elektrostatische Entladungen, tragen Sie daher Baumwollkleidung und erden Sie sich gegebenenfalls.

9. Blockbatterien/Batteriezellen haben ein hohes Gewicht. Auf sichere Aufstellung achten. Nur geeignete Transportmittel verwenden. Niemals Blockbatterien/Batteriezellen an den Polen anheben oder hochziehen.

10. Niemals die Batterie(n) an den Batteriepolen tragen.

11. Die (bleihaltigen) Batterien dürfen am Ende ihrer Gebrauchsdauer keinesfalls in den Hausmüll entsorgt oder auf einer Deponie abgelagert werden (weitere Informationen siehe Kap. 1.4).

12. Enthält Blei-Metall (CAS-Nr. 7439-92-1), einen Stoff der REACH-Kandidaten Liste.

Inhaltsverzeichnis

		1- C	
		te Symbole	
0 Si	cherh	eltshinweise	
0.	1	Allgemeine Hinweise	
0.	2	Sicherheitshinweise zum Arbeiten mit den Blei-Säure-Batterien	8
1 AI	lgeme	eine Informationen	12
1.		Sicherheitsvorkehrungen	
1.		Technische Daten	
	2.1	Beispiel für eine Zelle	
1.	2.2	Typenschild Batterie	
1.	3	CE-Kennzeichnung	13
1.	4	Entsorgung/Recycling	13
1.	5	Service	
2 Si	cherh	eit	1,
2.		Allgemeines	
2.		Persönliche Schutzausrüstung, Sicherheitskleidung, Ausstattung	
2.	_	Sicherheitsvorkehrungen	
	3.1	Schwefelsäure	
	3.2	Explosive Gase	
	3.3	Elektrostatische Entladungen	
	3.4	Elektrischer Schlag und Verbrennungen	
		ort	
3.		Allgemeines	
3.		Vollständigkeit der Lieferung/äußerlich erkennbare Schäden	
3.	3	Mängel	19
4 La	gerun	ng	20
4.	_	Allgemeines	
4.	2	Einlagerungsdauer	20
4.	3	Vorbereitungen bei mehrmonatiger Einlagerungsdauer	20
5 In	etalla	tion	2
5.		Anforderungen an den Aufstellort	
	1.1	Berechnung des Sicherheitsabstandes	
5.		Füllen von Zellen	
	2.1	Kontrolle	
		Belüftung - Vermeidung von Explosionsgefahren	
		Belüftung - Berechnung der Lüftungsanforderungen für Batterieräume	
	2.2	Füllvorgang	
5	2.3	Nach Abschluss der Standzeit.	
5.		Ruhespannungsmessung durchführen	
5.		Werkzeug und Ausrüstung zur Durchführung der Installation	
5.		Gestelle installieren	
5.		Schränke installieren	
5.		Montage der Batterien	
5.		Allgemeine Hinweise zum Verschalten der Batterien	
5.		Batterien in die Gestelle einbringen.	
	10	Batterien verschalten	
		Anschlusspole	
		Art der Verbindungskabel	
		Batterien mit Batterieverbinder verklemmen.	
5.	10.4	Montage der Schraubverbinder	33

5.10.5 Anschlussplatten an der Batterie anklemmen	
5.11 Batteriesystem an Gleichstromversorgung anschließen	
5.12 Inbetriebsetzungsladung (Erstladung)	35
5.12.1 Inbetriebsetzungsladung mit konstanter Spannung (IU-Kennlinie)	36
5.12.2 Inbetriebsetzungsladung mit konstantem (I-Kennlinie) oder fallendem Strom (W-Kennlinie)	36
5.12.3 Erweiterte Inbetriebsetzungsladung	36
5.13 Elektrolytstandsprüfung	
5.14 Elektrolytdichteausgleich	
5.15 Tausch einer Zelle/Batterie im Strang (Ersatzzelle trocken, formiert)	
5.15.1 Vor dem Tausch der Zellen/Batterie	
5.15.2 Bewegen der Zellen/Batterien	
5.15.3 Füllen der Zellen/Batterien mit Säure	
5.15.4 Die Inbetriebsetzung	
5.15.5 Prüfung des Elektrolyts (Level)	
5.15.6 Elektrolytdichteausgleich	
5.15.7 Montage der Schraubverbinder.	
5.15.7 Montage der Schladbverbinder	50
6 Betrieb der Batterien	
6.1 Entladen	
6.2 Laden - Allgemeines	
6.2.1 Bereitschaftsparallelbetrieb	
6.2.2 Pufferbetrieb	
6.2.3 Umschaltbetrieb (Lade-/Entladebetrieb)	
6.2.4 Erhaltungsladen	
6.2.5 Ausgleichsladen (Korrekturladen)	43
7 Einstellungen zum Laden von HOPPECKE sun power v L Batterien	44
7.1 Lade- und Entladeparameter	
7.2 Wechselströme	45
7.3 Wasserverbrauch	45
7.4 Eiynfluss der Temperatur auf Funktion und Gebrauchsdauer der Batterie	46
7.4.1 Temperatureinfluss auf die Batteriekapazität	
7.4.2 Einfluss der Temperatur auf die Brauchbarkeitsdauer	
7.5 Einfluss der Zyklen auf das Batterieverhalten	
7.5.1 Die Haltbarkeit in Zyklen ist abhängig von der Entladetiefe (DoD)	
7.5.2 Haltbarkeit in Zyklen in Abhängigkeit der Umgebungstemperatur	
7.5.3 Gefrierpunkt des Elektrolyten beeinflusst durch die Entladetiefe (DoD)	
7.6 Bemerkungen zur Gewährleistung	
8 Batteriepflege	
8.1 Halbjährlich durchzuführende Arbeiten	
8.2 Jährlich durchzuführende Arbeiten	
8.3 Reinigen der Batterie	51
9 Batteriesystem prüfen	52
9.1 Durchführung der Kapazitätsprüfung (Kurzform)	52
9.2 Durchführung der Kapazitätsprüfung (ausführliche Fassung)	53
9.3 Kapazitätsprobe der Batterie	54
10 Störungsbeseitigung	57
11 Notwendige Belüftung bei Wasserstoffentwicklung der Batterien	57
12 Demontage	59
12 Demontage Prüfprotokoll	

1 Allgemeine Informationen

In geschlossenen Blei-Säure-Batterien wird flüssiger Elektrolyt verwendet. Bedingt durch die ständige Wasserzersetzung wird Wasserstoff- und Sauerstoffgas erzeugt. Das so "verbrauchte" Wasser muss von Zeit zu Zeit nachgefüllt werden. Bei Einsatz von HOPPECKE AquaGen® premium.top Rekombinationssystemen (optionales Zubehör) können diese Wassernachfüllintervalle extrem verlängert werden. Aufgrund der Verwendung eines flüssigen Elektrolyten ist kein lageunabhängiger Betrieb möglich. HOPPECKE bietet zahlreiche geschlossene Bleibatterien als Einzelzelle (Nominalspannung 2 V) oder Block (Nominalspannung: 4 V, 6 V oder 12 V) für unterschiedliche Anwendungen an.

1.1 Sicherheitsvorkehrungen

Bevor Sie irgendwelche Tätigkeiten im Zusammenhang mit den Batterien ausführen, bitten wir Sie, diese Dokumentation aufmerksam und in Ruhe zu lesen. Sie enthält wichtige Informationen zum sicheren und fachgerechten Auspacken, Lagern, Installieren, Inbetriebsetzen, Betreiben und Warten von gefüllten Blei-Säure-Batterien.

Es ist für Ihre Sicherheit sowie für die Sicherheit Ihrer Kollegen und die der Anlage unerlässlich, dass Sie alle Anweisungen in dieser Dokumentation gelesen und verstanden haben und auch strikt befolgen. Wenn Sie Sachverhalte in dieser Dokumentation nicht verstanden haben oder wenn es örtliche Vorschriften und Bestimmungen gibt, die nicht von der Dokumentation abgedeckt werden (bzw. die den Informationen in dieser Dokumentation zuwiderlaufen), nehmen Sie bitte Kontakt mit Ihrem örtlichen HOPPECKE Vertragspartner auf. Alternativ können Sie uns auch direkt in der Zentrale erreichen.

Es ist unerlässlich, dass Sie im Umgang mit der Installation, dem Betrieb und mit der Wartung von Blei-Säure-Batterien vertraut sind, wenn Sie Arbeiten an und mit dem Batteriesystem ausführen.

1.2 Technische Daten

1.2.1 Beispiel für eine Zelle

Jede Zelle/jeder Batterieblock hat auf der Oberseite des Zellen-/Blockdeckels ein eigenes Typenschild. Nachfolgend finden Sie ein Beispiel.

5 OPzS 250 2V 250Ah C_N / 266 Ah C₁₀

 $U_{float} = ^{"}2,23 \quad V/cell$ $d_{20^{\circ}C/68^{\circ}F} = 1,24 \quad kg/l$ Made in Germany

Die Angabe auf dem Typenschild lautet: 5 OPzS 250

= Anzahl der positiven Platten

OPzS = Bauart

250 = Nennkapazität CN (Kapazität bei Entladung mit zehnstündigem Strom (I_{+n}) nach zugehöriger DIN-Norm)

266 = tatsächliche Kapazität C₁₀ (Kapazität bei Entladung mit zehnstündigem Strom (I₁₀))

1.2.2 Typenschild Batterie

Das Typenschild der fertig verschalteten Batterieanlage findet sich am Batteriegestell bzw. im Batterieschrank.

Die Nennspannung, die Anzahl der Zellen/Blöcke, die Nennkapazität (${\rm C_{10}}={\rm C_n}$) und den Typ der Batterie können Sie dem Typenschild der Anlage entnehmen.

Abb. 1-1: Batteriegestell-Typenschild, beispielhaft

1.3 CE-Kennzeichnung

Bei Batterien ab 75 V DC bis 1500 V DC Nennspannung ist seit 01.01.97 eine EG-Konformitätserklärung 2006/95/EG (Niederspannungsrichtlinie) mit der entsprechenden CE-Kennzeichnung des Batteriesystems erforderlich. Für die Ausstellung der Erklärung und die Anbringung der CE-Kennzeichnung auf oder neben dem Typenschild der Batterie ist der Errichter der Batterieanlage zuständig.

1.4 Entsorgung/Recycling

Altbatterien mit diesem Zeichen sind wiederverwertbares Wirtschaftsgut und müssen dem Recyclingprozess zugeführt werden.

Altbatterien, die nicht dem Recyclingprozess zugeführt werden, sind unter Beachtung aller Vorschriften als Sondermüll zu entsorgen.

HOPPECKE bietet seinen Kunden ein eigenes Batterierücknahmesystem an. Unter Beachtung

- des Kreislaufwirtschafts- und Abfallgesetzes,
- der Batterieverordnung,
- der Transportgenehmigungsverordnung
- sowie nach den Grundsätzen des allgemeinen Umweltschutzes und unseren Unternehmensleitlinien führen wir sämtliche Bleibatterien der Sekundärbleihütte am Standort Hoppecke zu.

Die HOPPECKE Metallhütte ist europaweit als einzige Bleihütte erfolgreich zertifiziert nach

- DIN EN ISO 9001 (Verfahren und Abläufe),
- DIN EN ISO 14001 (Umweltaudit),
- Entsorgungsfachbetriebsverordnung zum Entsorgungsfachbetrieb mit allen dazugehörigen Abfallschlüsseln zum Lagern, Behandeln und Verwerten.

Weitere Informationen unter: +49(0)2963 61-280.

1.5 Service

HOPPECKE hat ein weltweites Servicenetz, das Sie nutzen sollten. Der HOPPECKE Service steht Ihnen zur Verfügung, wenn Sie bei der Installation des Batteriesystems Fachaufsicht wünschen, wenn Sie Teile bzw. Zubehör benötigen oder wenn Wartungsarbeiten an dem System auszuführen sind. Sprechen Sie uns oder Ihren örtlichen HOPPECKE Vertragspartner darauf an.

Die HOPPECKE Service-Rufnummer ist: Telefon +49(0)800 246 77 32

Fax +49(0)2963 61-481 Email service@hoppecke.com

HOPPECKE

2 Sicherheit

2.1 Allgemeines

In Folge von Schäden am Batteriegehäuse bei gefüllten Blei-Säure-Batterien können Elektrolyt, Säuredämpfe oder auch Wasserstoffgas austreten. Befolgen Sie daher stets die üblichen Sicherheitsvorkehrungen für den Umgang mit Blei-Säure-Batterien.

Verfahren zur Aufnahme verschütteter Säure:

Verschüttete Säure mit Bindemittel, z.B. Sand, festlegen und mit Kalk, Soda oder Natronlauge neutralisieren. Anschließend unter Beachtung der amtlichen, örtlichen Bestimmungen entsorgen. Nicht in die Kanalisation, ins Erdreich oder in Gewässer gelangen lassen. Zur Neutralisation von Elektrolyt in einer genehmigten Anlage verwendet man die in der nachstehenden Tabelle vorgeschlagenen Chemikalien.

Bei der Neutralisation geringer Mengen Elektrolyt sind alle Schutzmaßnahmen zu beachten.

Die erforderlichen Mengen an Chemikalien (siehe *Tab. 2–1*) sind in kleinen Portionen in den Elektrolyten einzurühren.

Besondere Vorsicht ist beim Zugeben von Soda notwendig (starkes Schäumen!).

Gefahr!

Der Endpunkt der Neutralisation ist bei einem pH-Wert von 6-8 erreicht. Steht ein entsprechendes Messgerät nicht zur Verfügung, lässt sich der Grad der Neutralisation mittels handelsüblichem Indikationspapier überprüfen. Die Neutralisation ist dann vollständig, wenn die Verfärbung des Indikationspapieres olivgrün bis gelb erscheint.

Eine Blaufärbung zeigt an, dass der Neutralisationspunkt bereits überschritten wurde. Es muss dann durch Säurezugabe eine Rückneutralisation erfolgen.

Gel-Elektrolyt aus beschädigten Batterien oder aus Altbatterien kann entsprechend entsorgt werden.

Zur Neutralisation von 1 I Elektrolyt der aufgeführten Nenndichten benötigt man folgende Mengen Kalk, Soda oder Natronlauge:

Kalk (kg) Sada (kg)	Natronlauge (I)			
Nenndichte	Kalk (kg) CaO	Soda (kg) Na ₂ CO ₃	NaOh 20%ig	NaOH 45%ig
1,20 kg/l	0,19	0,36	1,36	0,6
1,24 kg/l	0,23	0,44	1,65	0,73
1,27 kg/l	0,26	0,5	1,88	0,83
1,29 kg/l	0,28	0,54	2,03	0,9

Tab. 2-1: Chemikalien zur Neutralisation von 1 I Elektrolyt

Beachten Sie bitte auch alle Vorschriften, Schriften und Normen, wie in Kap. 0.2 genannt.

2.2 Persönliche Schutzausrüstung, Sicherheitsbekleidung, Ausstattung

Bei Arbeiten an Batterien Schutzbrille, Schutzhandschuhe und Schutzkleidung tragen!

Die Unfallverhütungsvorschriften sowie DIN EN 50110-1 und IEC 62485-2 (stationäre Batterien) oder IEC 62485-3 (Antriebsbatterien) beachten.

Beim Umgang mit Blei-Säure-Batterien muss zumindest folgende Ausrüstung zur Verfügung stehen:

- Spannungsisoliertes Werkzeug,
- Gummihandschuhe,
- Sicherheitsschuhe,
- Feuerlöscher,
- Gummischürze.
- Schutzbrille.
- Säurebindemittel zum raschen Neutralisieren ausgelaufener Säure (vgl. Kap. 2.1),
- Gesichtsschutz.
- Gesichtsmaske.
- Notfall-Augendusche (empfohlen).

Zur Vermeidung elektrostatischer Aufladung beim Umgang mit Batterien müssen Textilien, Sicherheitsschuhe und Handschuhe einen Oberflächenwiderstand <10⁸ Ohm und einen Isolationswiderstand ≥10⁵ Ohm besitzen (siehe hierzu IEC 62485-2 und DIN EN ISO 20345:2011 Persönliche Schutzausrüstung - Sicherheitsschuhe). Wenn möglich sog. ESD-Schuhe tragen.

Gefahr!

Legen Sie Uhren, Ringe, Ketten, Schmuck und sonstige Metallgegenstände beim Arbeiten mit Batterien ab.

Niemals in unmittelbarer Nähe von Batterien rauchen, mit offenen Flammen hantieren oder Funken erzeugen.

Legen Sie niemals Werkzeuge oder Metallteile auf Batterien!

Der Gebrauch von ordnungsgemäßem Werkzeug und von korrekter Schutzausrüstung kann im Falle eines Unfalls Verletzungen verhindern oder Verletzungsfolgen mildern.

2.3 Sicherheitsvorkehrungen

2.3.1 Schwefelsäure

Batterien sind bei ordnungsgemäßem Umgang sicher. Sie enthalten jedoch Schwefelsäure (H_2SO_4), die schwere Verätzungen und ernste Verletzungen verursachen kann.

Weitere Informationen zu Eigenschaften von Schwefelsäure können dem Sicherheitsdatenblatt für Schwefelsäure im Anhang entnommen werden.

Tragen Sie im Umgang mit Blei-Säure-Batterien immer Schutzhandschuhe und benutzen Sie ordnungsgemäßes Werkzeug.

Beachten Sie die nachfolgenden Hinweise und lesen Sie das ZVEI-Merkblatt "Hinweise zum sicheren Umgang mit Bleiakkumulatoren (Bleibatterien)" im Anhang.

Gefahr!

Der Batterieraum sollte dringend über folgende Einrichtungen verfügen:

- Notfall-Kit zum Auffangen von ausgetretenem Elektrolyt!
- Nachfolgend erwähnte Stoffe für die Anwendung im Notfall!

Bei Hautkontakt mit Schwefelsäure unverzüglich

- kontaminierte Kleidung ausziehen,
- Säure mit Baumwoll- oder Papiertuch abtupfen, nicht abreiben,
- Hautbezirk großzügig und sorfältig mit Wasser spülen,
- nach dem Spülen mit Seife gründlich nachwaschen,
- Kontakt mit nicht betroffenen Körperteilen vermeiden,
- Falls nötig, einen Arzt aufsuchen.

Bei Schwefelsäure in Ihren Augen sofort

- das betreffende Auge sorgfältig 15 Minuten lang mit großen Wassermengen spülen (mittels fließend Wasser oder Augenwaschflasche). Zu großen Wasserdruck vermeiden.
- Auf jeden Fall sofort einen Augenarzt aufsuchen.

Beim Verschlucken von Elektrolyt

- sofort reichlich Wasser trinken,
- unverzüglich Arzt hinzuziehen oder Krankenhaus aufsuchen.
- Bis zum Eintreffen des Arztes: Wenn vorhanden, Aktivkohle schlucken.

Bei Kontakt von Kleidung oder sonstigem Material mit Schwefelsäure unverzüglich

- kontaminierte Kleidung ausziehen,
- Kleidung in Natriumbicarbonat-Lösung (Natron oder Speisesoda) auswaschen,
- wenn keine Blasen mehr aufsteigen, mit klarem Wasser nachspülen.

2.3.2 Explosive Gase

Gefahi

Aus Blei-Säure-Batterien kann explosives Wasserstoff-Sauerstoff-Gasgemisch austreten. Im Fall einer Explosion des Gemisches können schwere Personenschäden auftreten.

- Tragen Sie immer die vorgeschriebene Schutzkleidung (Schutzbrille, spannungsisolierende Handschuhe und Sicherheitsschuhe, etc.).
- Benutzen Sie ausschließlich ordnungsgemäße Werkzeuge ("nicht funkenschlagend", mit spannungs-isolierten Griffen, etc.).
- Unterbinden Sie jegliche Zündquelle wie Funken, Flammen, Lichtbögen.
- Verhindern Sie elektrostatische Entladungen. Tragen Sie Baumwollkleidung und erden Sie sich gegebenenfalls, wenn Sie direkt an den Batterien arbeiten.

Im Brandfall ausschließlich mit Wasser oder CO, löschen!

Den Feuerlöscher nicht direkt auf die zu löschende(n) Batterie(n) richten. Es besteht die Gefahr, dass das Batteriegehäuse infolge thermischer Spannungen reißt. Des Weiteren besteht Explosionsgefahr durch mögliche statische Aufladungen auf der Batterieoberfläche. Schalten Sie die Batterieladespannung ab.

Benutzen Sie bei den Löscharbeiten Atemgerät mit autarker Atemluftversorgung. Bei Einsatz von Löschwasser/Schaum besteht die Gefahr, dass es zu Reaktionen mit dem Elektrolyt kommt und es in der Folge zu heftigem Spritzen kommt. Tragen Sie daher säurefeste Schutzkleidung. Beim Verbrennen von Kunststoffmaterial kann es zur Entstehung giftiger Dämpfe kommen. Verlassen Sie in diesem Fall möglichst schnell die Brandstelle, sofern sie nicht das o.g. Atemgerät tragen.

Beim Einsatz von ${\rm CO}_2$ -Feuerlöschern besteht die Gefahr, dass die Batterie infolge von statischer Aufladung explodiert!

Beachten Sie ebenfalls die Informationen in dem ZVEI-Merkblatt "Hinweise zum sicheren Umgang mit Bleiakkumulatoren (Bleibatterien)" im Anhang.

2.3.3 Elektrostatische Entladungen

Alle Blei-Säure-Batterien entwickeln beim Betrieb, vor allem aber beim Laden, Wasserstoff- und Sauerstoffgas, bekannt auch als Knallgas. Diese Gase entweichen aus den Batterien in die Umgebung der Batterie.

Bei der immer vorzusehenden natürlichen oder technisch unterstützten Lüftung muss man davon ausgehen, dass nur im Nahbereich der Batteriezellenöffnungen ein zündfähiges Wasserstoff-Sauerstoff-Gasgemisch vorhanden ist. Im Inneren des Batteriegehäuses selbst befindet sich immer ein zündfähiges Wasserstoff-Sauerstoff-Gas-gemisch. Dies gilt unabhängig von der Batterietechnologie, Design oder Hersteller und ist für alle Blei-Säure-Batterien typisch.

Die für eine Zündung von Knallgas notwendige Energie ist sehr gering und kann beispielhaft folgendermaßen freigesetzt oder zugeführt werden:

Offene Flammen oder Feuer, glimmende Funken oder Funkenflug bei Schleifarbeiten, elektrische Funken durch Schalter oder Sicherungen, heiße Oberflächen > 200 °C und – eine häufig unterschätzte Ursache – elektrostatische Entladungen.

Maßnahmen zur Vermeidung von Knallgaszündungen durch elektrostatische Entladungen

Die Entstehung elektrostatischer Entladungen auf der Batterie oder auf ihrem Körper oder ihrer Kleidung kann vermieden werden, wenn Folgendes beachtet wird:

Batterie nicht mit einem trockenen Lappen, insbesondere nicht mit einem Lappen aus synthetischem Material abreiben! Reiben auf Kunststoffoberflächen (Batteriegehäuse sind üblicherweise aus Kunststoff) erzeugt elektrostatische Ladungen.

Reinigen Sie Batterieoberflächen nur mit Wasser befeuchteten Baumwolllappen. Beim Wischen mit befeuchteten Baumwolllappen werden keine Ladungen aufgebaut.

Vermeiden sie bei Arbeiten an Batterien unbedingt, dass Ihre Kleidung (z.B. aus Wolle) an der Batterie reibt, dadurch können auf dem Batteriegehäuse oder auf Ihrem Körper oder Ihrer Kleidung elektrostatische Ladungen aufgebaut werden.

Tragen Sie geeignete Schuhe und Kleidung, die auf Grund Ihres speziellen Oberflächenwiderstandes die Entstehung elektrostatischer Ladungen verhindert, dadurch kann der Aufbau elektrostatischer Ladungen auf ihrem Körper oder ihrer Kleidung vermieden werden.

Entfernen Sie keine auf der Batterie klebende Etiketten ohne besondere Sicherheitsvorkehrungen. Das Abziehen oder Abreißen von Kunststoffetiketten von Kunststoffoberflächen kann elektrostatische Ladungen aufbauen, die bei Entladung Knallgas zünden kann.

Wischen Sie die Batterie vor Abziehen des Etiketts feucht ab.

2.3.4 Elektrischer Schlag und Verbrennungen

Gefahr!

Es besteht die Gefahr schwerer elektrischer Schläge durch Batterien. Im Falle eines Kurzschlusses können sehr hohe Ströme fließen. Berühren Sie keine blanken Batterieteile, Verbinder, Klemmen und Pole. Bei Batterieanlagen mit Nennspannung von über 1500 V DC müssen Vorrichtungen zur Auftrennung in Zellengruppen von weniger als 1500 V DC vorhanden sein. Seien Sie bei allen Arbeiten an dem Batteriesystem sehr vorsichtig, um ernste Verletzungen durch elektrischen Schlag und Verbrennungen zu verhindern.

Tragen Sie immer die vorgeschriebene Schutzkleidung (spannungsisolierende Gummihandschuhe, Gummischuhe, etc.) und setzen Sie ausschließlich Werkzeug ein, das aus nicht leitendem Material besteht oder spannungsisoliert ausgeführt ist.

Legen Sie Uhren, Ringe, Ketten, Schmuck und sonstige Metallgegenstände beim Arbeiten mit Batterien ab.

Bevor Sie Arbeiten an dem Batteriesystem ausführen...

Prüfen Sie, ob das Batteriesystem geerdet ist, was wir generell nicht empfehlen. Sollte dies der Fall sein, unterbrechen Sie die entsprechende Verbindung. Das unbeabsichtigte Berühren einer geerdeten Batterie kann einen schweren elektrischen Schlag zur Folge haben. Dieses Risiko kann ohne Erdverbindung deutlich gesenkt werden. Die Gestelle (bzw. Schränke) für die Aufnahme der Batterien müssen hingegen sehr wohl geerdet oder vollisoliert sein.

Im Falle eines geerdeten Batteriesystems...

Es liegt Spannung an zwischen Erde und dem ungeerdeten Pol. Beim Berühren dieses Pols durch eine geerdete Person besteht u.U. Lebensgefahr! Gefahr eines Kurzschlusses besteht auch, wenn Schmutz und Säureablagerungen auf dem ungeerdeten Pol in Berührung mit dem Batteriegestell kommen.

Wenn es innerhalb des (geerdeten) Batteriesystems zu einem (unbeabsichtigten) zusätzlichen Erdschluss über einige Zellen kommt, besteht Kurzschlussgefahr bzw. Feuer- und Explosionsgefahr.

Im Falle eines nicht geerdeten Batteriesystems...

Wenn es innerhalb des Batteriesystems zu einem unbeabsichtigten Erdschluss kommt, liegt eine elektrische Spannung zwischen Erde und dem ungeerdeten Pol. Die Spannung kann mitunter gefährlich hoch sein – Lebensgefahr durch elektrischen Schlag!

Wenn es auch noch zu einem zweiten unbeabsichtigten Erdschluss kommt, besteht Kurzschlussgefahr bzw. Feuer- und Explosionsgefahr.

Sollten Sie irgendwelche Fragen zu o.g. Punkten haben oder sonstige Fragen im Zusammenhang mit der Sicherheit beim Arbeiten an einem Batteriesystem, nehmen Sie bitte Kontakt mit Ihrem örtlichen HOPPECKE Vertragspartner auf. Alternativ können Sie uns auch direkt in der Zentrale erreichen.

3 Transport

3.1 Allgemeines

Wir verpacken die zum Versand kommenden Batterien mit größtmöglicher Sorgfalt, damit sie unbeschädigt bei Ihnen ankommen. Dennoch empfehlen wir Ihnen dringend, die Lieferung direkt bei der Ankuft hinsichtlich eventueller Transportschäden zu untersuchen.

Gefüllte Blei-Akkumulatoren werden beim Straßentransport nicht als Gefahrgut behandelt, wenn

- sie unbeschädigt und dicht sind,
 - sie gegen Umfallen, Verrutschen und Kurzschluss gesichert sind,
 - sie auf einer Palette fest eingebunden sind,
 - sich an dem Packstück von außen keine gefährlichen Spuren von Säure oder Lauge etc. befinden.

Beim LKW-Transport ist sorgfältige Ladungssicherung unerlässlich!

Achtung!

Blockbatterien/Zellen haben ein hohes Gewicht (je nach Type zwischen ca. 10 kg und max. 1100 kg je Zelle/Block). Bitte Sicherheitsschuhe verwenden. Für Transport und Installation nur geeignete Transporteinrichtungen verwenden!

3.2 Vollständigkeit der Lieferung/äußerlich erkennbare Schäden

Prüfen Sie die Lieferung unmittelbar nach Anlieferung (noch während der Spediteur zugegen ist) auf Vollständigkeit (Abgleich mit dem Lieferschein)! Prüfen Sie insbesondere die Anzahl der Batterie-Paletten und die Anzahl von Kartons mit Zubehör. Prüfen Sie anschließend die Ware hinsichtlich eventueller Transportschäden.

Notieren Sie gegebenenfalls

- Schäden an der Umverpackung,
- sichtbare Flecken oder Feuchtigkeit, die auf ausgetretenen Elektrolyt hinweisen könnten.

Im Falle einer unvollständigen Lieferung oder eines Transportschadens:

- Schreiben Sie einen kurzen Mängelbericht auf den Lieferschein, bevor Sie ihn unterschreiben;
- Bitten Sie den Spediteur um eine Prüfung und notieren Sie sich den Namen des Prüfenden;
- Verfassen Sie einen M\u00e4ngelreport, den Sie uns und der Spedition innerhalb von 14 Tagen zuleiten.

3.3 Mängel

Treffen Sie alle erforderlichen Sicherheitsmaßnahmen zur Vermeidung eines elektrischen Schlags. Bedenken Sie, dass Sie mit unter Spannung stehenden Batterien hantieren! Beachten Sie alle Hinweise in *Kap.* 2.

Packen Sie die Ware möglichst bald nach Anlieferung aus und prüfen Sie hinsichtlich Mängel, sofern die Inbetriebnahme zeitnah erfolgen soll.

Die Batterien können im Auslieferzustand ungefüllt oder gefüllt sein.

Falls Sie gefüllte Batterien erhalten haben, prüfen Sie den Elektrolytstand in den Zellen. Das Ausgleichen des Elektrolytstandes sollte erst nach der Inbetriebnahme der Zellen erfolgen (Ladeerhaltungsbetrieb).

Falls Sie ungefüllte Batterien erhalten haben, warten Sie mit dem Füllen, bis die Batterien an ihrem endgültigen Standort aufgestellt sind.

Prüfen Sie den gesamten Lieferumfang anhand des detaillierten Lieferscheins (bzw. anhand der Packliste).

Wenn dem Spediteur Mängel oder Unvollständigkeiten zu spät angezeigt werden, kann dies den Verlust Ihrer Ansprüche zur Folge haben.

Sollten Sie Fragen im Zusammenhang mit Unvollständigkeit der Lieferung oder mit Schäden an den angelieferten Produkten haben, nehmen Sie bitte Kontakt mit Ihrem örtlichen HOPPECKE Vertragspartner auf.

Alternativ können Sie uns auch direkt in der Zentrale erreichen.

4 Lagerung

4.1 Allgemeines

Nach Erhalt sollten Sie die Batterien möglichst bald auspacken, installieren und laden. Falls dies nicht möglich ist, lagern Sie die Batterien in vollgeladenem Zustand in einem sauberen, trockenen, kühlen und frostfreien Raum. Zu hohe Lagertemperatur führt zu schnellerer Selbstentladung und vorzeitiger Alterung. Setzen Sie die Batterien keiner direkten Sonneneinstrahlung aus.

Die Paletten mit den Batterien nicht stapeln, da dies Schäden nach sich ziehen kann, die nicht unter den Gewährleistungsanspruch fallen.

4.2 Einlagerungsdauer

Werden Blöcke/Zellen für längere Zeit gelagert, so sind diese voll geladen in einem trockenen, frostfreien Raum unterzubringen. Direkte Sonneneinstrahlung ist zu vermeiden. Um Schäden zu vermeiden, muss nach einer Lagerzeit von maximal drei Monaten eine Ausgleichsladung der Batterien erfolgen (vgl. Kap. 6.2.5). Bei der Errechnung des genauen Zeitpunkts gehen Sie vom Inbetriebsetzungsdatum in der Fertigung aus (gem. Aufdruck auf Zelle/Block). Gegen Ende der max. Lagerdauer kann es zu einer erschwerten Ladungsannahme während der Wiederaufladung kommen. Daher empfiehlt HOPPECKE ein entsprechendes Ladeverfahren, welches eine schonende und vollständige Wiederaufladung gewährleistet (vgl. Kap. 6.2.5). Bei Lagertemperaturen über 20 °C kann es erforderlich sein, die o.g. Ausgleichsladung häufiger durchzuführen (bei 40 °C monatlich laden). Beachten Sie auch die Abb. 4–1. Bei Nichtbeachtung kann es zur Sulfatierung der Platten kommen, mit der Folge von Leistungseinbußen und verkürzter Brauchbarkeitsdauer der Batterie. Die Wiederaufladung während der Lagerzeit sollte max. zwei Mal erfolgen. Anschließend ist die Batterie in ständiger Ladeerhaltung zu betreiben.

Die Brauchbarkeitsdauer der Batterie(n) beginnt mit der Lieferung der gefüllten und geladenen Batterie(n) ab Werk HOPPECKE. Lagerzeiten sind auf die Brauchbarkeitsdauer vollständig anzurechnen.

Ungefüllte Blöcke/Zellen in einem trockenen, frostfreien Raum lagern. Direkte Sonneneinstrahlung vermeiden. Eine Lagerdauer von 24 Monaten sollte nicht überschritten werden.

Empfohlenes Ladverfahren bei Erreichen der max. Einlagerungsdauer:

Ladung mit konst. Strom von 1 A oder 2 A je 100 Ah $\rm C_{10}$ Batteriekapazität. Abbruch der Ladung, wenn alle Zellspannungen auf mindestens 2,6 V/Zelle angestiegen sind (siehe auch Kap. 6.2).

4.3 Vorbereitungen bei mehrmonatiger Einlagerungsdauer

Wenn sich die Einlagerungsdauer voraussichtlich über mehrere Monate hinzieht, sollten Sie sich rechtzeitig um ein geeignetes Ladegerät kümmern, mit dem die o.g. Ladeaufgaben durchgeführt werden können. Die Batterien/Zellen sollten beim Zwischenlagern so angeordnet werden, dass sie für das Laden provisorisch in Reihe geschaltet werden können. Belassen Sie sie hierbei auf ihren Paletten, bis sie endgültig installiert sind.

Montage-, Inbetriebsetzungs- und Gebrauchsanleitung für geschlossene ortsfeste Blei-Säure-Batterien 7140203150 V1 4 (09 2018)

Um den o.g. Aufwand zu sparen, empfehlen wir dringend, die Batterie(n) vor Ablauf von drei Monaten an die reguläre Ladespannungsversorgung anzuschließen oder die Batterien ungefüllt mit Elektrolyt separat zu ordern.

Bei Nichtbeachtung der Nachladeintervalle erlischt der Gewährleistungsanspruch.

Auch beim Laden provisorisch verschalteter Batterien auf eine ausreichende Belüftung achten (siehe *Kap.* 5.2.1.1).

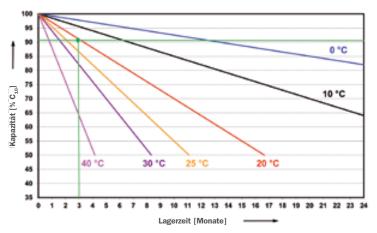


Abb. 4-1: Kapazität über Lagerzeit

5 Installation

5.1 Anforderungen an den Aufstellort

Bei der Erneuerung alter Batterien sicherstellen, dass vor Beginn der Demontage der alten Batterie die Zuleitungen freigeschaltet wurden (Lasttrenner, Sicherungen, Schalter)! Dieses hat durch schaltberechtigtes Personal zu erfolgen!

Sollten Sie irgendwelche Fragen zur Installation des Batteriesystems haben, nehmen Sie bitte Kontakt mit Ihrem örtlichen HOPPECKE Vertragspartner auf. Alternativ können Sie uns auch direkt in der Zentrale erreichen.

Bei der Festlegung des Aufstellortes und des Platzbedarfs sowie bei der Durchführung der Montagearbeiten beachten Sie bitte die gültige Aufstellzeichnung, sofern vorhanden. Der Fußboden muss für die Aufstellung der Batterien geeignet sein, d.h.

- geeignete Belastbarkeit,
- elektrolytbeständige Aufstellfläche (sonst Verwendung von Säureauffangwannen),
- ausreichende Leitfähigkeit,
- ebenerdig (max. Dicke von Unterlegelementen unter Gestell bzw. Schrank: 6 mm),
- möglichst vibrationsfrei (sonst ist die Verwendung von Spezialgestellen erforderlich).

Befolgen Sie innerhalb der EU die VDE 0510 Teil 2: 2001–12, entspr. IEC 62485-2: "Sicherheitsanforderungen an Batterien und Batterieanlagen – Teil 2: Stationäre Batterien".

Anforderung	Unsere Empfehlung	
Belüftungsmöglichkeit	Ausreichende Raumbelüftung ist zwingend notwendig, um die Wasserstoffkonzentration (H ₂ -Konzentration) in der Raumluft des Batterieraums auf einem Wert < 2 Vol.% zu halten. Wasserstoff ist leichter als Luft! Es ist zwingend sicherzustellen, dass es nicht zu Wasserstoffansammlungen (z.B. im Deckenbereich) kommen kann. Be- und Entlüftungsöffnungen sollten daher im unmittelbaren Deckenbereich angebracht sein (siehe auch <i>Kap.</i> 5.2.1.1 und <i>Kap.</i> 5.2.1.2).	
Umgebung	Die Umgebung sollte sauber und trocken sein. Wasser-, Öl- und Schmutzreste auf der Zellenoberfläche sind zu vermeiden, ggf. umgehend zu entfernen.	
Gangbreite vor und zwischen den Batterie- gestellen (bzw. Schränken)	Europa: Gangbreite = 1,5 x Zellenbreite (Einbautiefe), mindestens jedoch 500 mm (siehe auch IEC 62485-2). USA: 36" entspr. 915 mm Empfehlung von HOPPECKE: Wenn es der Aufstellort ermöglicht: 1 m. Sonst: entsprechend den örtlichen Vorschriften.	
Mindestabstände Gestell zu Wand Batterie zu Wand Leitende Teile zu Erde Endpole der Batterie Batterie zu Zündquelle Batterieoberseite zur nächsten Gestelletage bzw. zum	50 mm 100 mm 1.500 mm bei U _{Nenn} oder U _{Teil} >120 V DC zwischen nichtisolierten und geerdeten Teilen (z.B. Wasserleitungen) 1.500 mm bei U _{Nenn} >120 V DC Siehe Berechnung des Sicherheitsabstandes im <i>Kap. 5.1.1.</i> 250 mm Spannungs- und Dichtemessung sowie Wasserzugabe müssen gut möglich sein.	
Zugangstür	Abschließbar und feuerhemmend (T90).	
Beleuchtung	Empfehlung: mindestens 100 lx.	
Kennzeichnung	Warnschilder entspr. IEC 62485-2.	
	Warnung vor elektrischer Spannung nur notwendig, wenn Batteriespannung > 60 V DC ist.	
Explosionsgefahr	Keine Zündquellen (z.B. offene Flammen, Glühkörper, elektrische Schalter, Funken) im Nahbereich der Zellenöffnungen.	
Umgebungstemperatur	Der empfohlene Betriebstemperaturbereich liegt zwischen 10 °C und 30 °C. Ideal ist 20 °C \pm 5 K. Höhere Temperaturen verkürzen die Brauchbarkeitsdauer. Alle Technischen Daten gelten für die Nenntemperatur von 20 °C. Niedrigere Temperaturen verringern die verfügbare Kapazität. Das Übersschreiten der Grenztemperatur von 55 °C ist unzulässig. Dauernde Betriebstemperaturen von 45 °C oder mehr sind zu vermeiden. Batterien sollten weder direkter Sonneneinstrahlung noch sonstigen Wärmequellen ausgesetzt werden.	
Umgebungsluft	Die Luft im Batterieraum muss frei von Verunreinigungen sein, z.B. Schwebe- stoffe, Metallpartikel oder brennbare Gase. Die Luftfeuchtigkeit sollte bei maximal 85% liegen.	
Erdung	Wenn die Gestelle bzw. Batterieschränke geerdet werden sollen, muss ein Anschluss zu einer zuverlässigen Erdungsstelle vorhanden sein.	
Unterbringung der Batterien	Wir empfehlen die ordnungsgemäße Installation der Batterien in HOPPECKE Batteriegestellen bzw. Schränken. Die Verwendung betreibereigener Lösungen kann zum Erlöschen der Gewährleistung für Batterien führen.	
Länderspez. Vorschriften	In einigen Ländern ist vorgeschrieben, dass die Gestelle mit den Batterien in Auffangwannen installiert werden. Bitte beachten Sie die örtlichen Vorschriften und nehmen Sie ggf. Kontakt mit Ihrem örtlichen HOPPECKE Vertragspartner auf.	

Tab. 5-1: Anforderungen an den Aufstellort

HOPPECKE POWER FROM INNOVATION

22

Montage-, Inbetriebsetzungs- und Gebrauchsanleitung für geschlossene ortsfeste Blei-Säure-Batterien 7140203150 V1.4 (09.2018)

5.1.1 Berechnung des Sicherheitsabstandes

Im Nahbereich von Batterien ist die Verdünnung explosiver Gase nicht immer sichergestellt. Deshalb ist ein Sicherheitsabstand durch eine Luftstrecke einzuhalten, in dem keine funkenbildenden oder glühenden Betriebsmittel vorhanden sein dürfen (max. Oberflächentemperatur 300 °C). Die Ausbreitung der explosiven Gase hängt von der freigesetzten Gasmenge und der Lüftung in der Nähe der Gasungsquelle ab. Für die Berechnung des Sicherheitsabstands "d" von der Gasungsquelle kann unter Annahme einer halbkugelförmigen Ausbreitung nachstehende Gleichung angewendet werden. Der Sicherheitsabstand d kann auch aus Abb. 5-1 "Sicherheitsabstand in Abhängigkeit von der Batteriekapazität" abgelesen werden. Nachfolgend wird die genauere Berechnung aufgezeigt.

Sicherheitsabstand:

Der erforderliche Sicherheitsabstand muss gemäß IEC 62485-2 berechnet werden.

Volumen einer Halbkugel:

$$V_h = \frac{2}{3} \times \pi \times d^3$$

Erforderlicher Luftvolumenstrom zur Verdünnung des erzeugten Wasserstoffs H, auf max. 4% in der Luft:

$$\begin{aligned} Q_{gas} &= 0.05 \times \langle n \rangle \times I_{gas} \times C \times 10^{-3} \left(\frac{m^3}{h} \right) \\ Q_{gas} &= \frac{V_h}{t} \end{aligned}$$

Erforderlicher Radius der Halbkugel:

$$d = 28.8 \times (\sqrt[3]{n}) \times \sqrt[3]{I_{\rm gas}} \times \sqrt[3]{C} \ (mm)$$

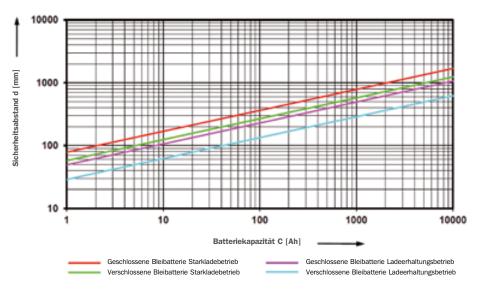


Abb. 5-1: Sicherheitsabstand in Abhängigkeit von der Batteriekapazität

5.2 Füllen von Zellen

Wurden die Zellen/Batterien in trockenem (ungefülltem) Zustand angeliefertw, erfolgt nun das Befüllen.

Entleerte, aber nicht restentleerte und gereinigte Säurebehälter, gelten im Sinne der GGVS (Gefahrgutverordnung Straße) und im Sinne der Abfallverordnung als gefüllt.

Wenn Säurekanister entsorgt werden sollen, sind die jeweils gültigen gesetzlichen Bestimmungen zur Entsorgung im Bestimmungsland einzuhalten. Bitte beachten Sie auch die Entsorgungs- und Behandlungsvorschläge im Sicherheitsdatenblatt zur Schwefelsäure.

5.2.1 Kontrolle

Vor dem Füllen der Zellen ist sicherzustellen, dass die Vorgaben der IEC 62485-2 bezüglich der Aufstellung und Belüftung eingehalten werden. Wird bei der Inbetriebsetzungsladung mit einer höheren Stromstärke geladen als für die Auslegung der Lüftungseinrichtungen zugrunde gelegt ist, so muss für die Dauer der Inbetriebsetzung und eine Stunde darüber hinaus die Lüftung des Batterieraumes entsprechend dem angewendeten Ladestrom verstärkt werden, z.B. durch ortsbewegliche Zusatzlüfter. Das Gleiche gilt für gelegentliche Sonderladebehandlungen von Batterien.

5.2.1.1 Belüftung - Vermeidung von Explosionsgefahren

Da die beim Laden von Batterien entstehenden Gase nicht vermeidbar sind, muss durch ausreichende Lüftung eine Verdünnung der Wasserstoffkonzentration erreicht werden. Funkenbildende Betriebsmittel sind in der Nähe von Batterien nicht gestattet.

Zündquellen für Knallgasexplosionen können sein:

- offene Flamme,
- Funkenflug,
- elektrische, funkenbildende Betriebsmittel,
- mechanische, funkenbildende Betriebsmittel,
- elektrostatische Aufladung.

Maßnahmen zur Vermeidung von Knallgasexplosionen:

- ausreichende natürliche oder technische Lüftung,
- keine Heizung mit offener Flamme oder Glühkörper (T > 300 °C),
- abgetrennte Batteriefächer mit separater Lüftung,
- antistatische Kleidung, Schuhe und Handschuhe (entsprechend der aktuell gültigen DIN- und EN-Verordnung),
- Oberflächenableitwiderstand: < $10^8 \Omega$ und einen Isolationswiederstand ≥ $10^5 \Omega$,
- Handleuchten mit Netzkabel ohne Schalter (Schutzklasse II),
- bzw. Handleuchten mit Batterie (Schutzart IP54),
- Warn- und Verbotschilder.

Die Lüftungsanforderungen für Batterieräume, -schränke oder -fächer ergeben sich aus der erforderlichen Verdünnung des beim Laden entstehenden Wasserstoffs und den Sicherheitsfaktoren, die die Alterung der Batterie und Fehlermöglichkeiten ("worst case") einschließen.

5.2.1.2 Belüftung - Berechnung der Lüftungsanforderungen für Batterieräume

Luftvolumenstrom 0:

$$Q = v \times q \times s \times n \times I_{Gas} \times \frac{C}{100 \text{ Ab}}$$

v = Verdünnungsfaktor = 96% Luft/4% H_o = 24

q = erzeugte Wasserstoffmenge = 0,42 10⁻³ m³/Ah

s = Sicherheitsfaktor = 5

n = Anzahl der Zellen

I_{cos} = Strom je 100 Ah

C = Nennkapazität der Batterie

Zusammenfassung der Faktoren:

$$\begin{split} v\times q\times s &= 0.05 \\ Q &= 0.05\times n\times I_{Gas}\times \frac{C}{100Ah} \quad \text{mit } Q \text{ in mi/h, } I_{Gas} \text{ in } A \\ I_{Gas} &= I_{float} \text{ bzw. } I_{boost}\times f_g\times f_s \end{split}$$

Parameter	Bleibatterien geschlossene Zellen Sb < 3%
f _g : Gasemissionsfaktor	1
f _s : Sicherheitsfaktor für die Gasemission (schließt 10% fehlerhafter Zellen und Alterung ein)	5
U _{float} : Ladeerhaltungsspannung, V/Zelle	2,23
I _{float} : typischer Ladeerhaltungsstrom, mA pro Ah	1
I strom (Erhaltungsladen), mA pro Ah (bezieht sich nur auf die Berechnung des Luftvolumenstroms beim Erhaltungsladen)	5
U _{boost} : Starkladespannung, V/Zelle	2,40
I _{boost} : typischer Starkladestrom, mA pro Ah	4
I _{gas} : Strom (Starkladen), mA pro Ah (bezieht sich auf die Berechnung des Luftvolumenstroms beim Starkladen)	20

Tab. 5-2: Richtwerte für den Strom (Auszug aus IEC 62485-2)

Zur lüftungstechnischen Gestaltung von Batterieräumen kann man entsprechend den baulichen Gegebenheiten eine "natürliche Lüftung" oder eine "technische Lüftung" zugrunde legen.

Die folgenden Punkte sind zu beachten:

Natürliche Lüftung:

- Zu- und Abluftöffnungen erforderlich;
- Mindestquerschnitt (freie Wandöffnung): A ≥ 28 × Q (A in cm², Q in m³/h) (Annahme: $v_{luft} = 0.1 \text{ m/s}$);
- Verstärkung der Lüftung durch Kaminwirkung (Luftführung);
- Entlüftung ins Freie (nicht in Klimaanlagen oder angrenzende Räume).

¹⁾ Bei Einsatz von AquaGen® premium.top Rekombinationssystemen kann der Strom I cae auf 50% verringert werden.

24

Technische Lüftung:

- Verstärkte Lüftung mit Ventilator (in der Regel Sauglüfter);
- Luftdurchsatz entsprechend dem Luftvolumenstrom Q;
- Angesaugte Luft muss sauber sein;
- Beim Laden mit starker Gasung ist Lüfternachlauf von 1 h erforderlich;
- Bei mehreren Batterien in einem Raum gilt: Luftbedarf = $\sum Q$;
- Vermeidung eines lüftungstechnischen Kurzschlusses durch genügend Abstand zwischen Zu- und Abluftöffnung.

Ein weiteres ausführliches Berechnungsbeispiel zur Belüftung von Batterieräumen finden Sie im Kap. 10 "Notwendige Belüftung bei Wasserstoffentwicklung der Batterien".

5.2.2 Füllvorgang

Die Füllsäure mit der Dichte nach *Tab.* 5–3 muss den Reinheitsvorschriften nach DIN 43530 Teil 2, IEC 60993-3 oder IEEE 450:2002 entsprechen. Die Zellen sind bis zur unteren Elektrolytstandmarke zu füllen. Dabei sind säurebeständige Fülleinrichtungen (Trichter), jedoch nicht aus Edelstahl, zu verwenden. Die bereits auf die Batterien aufgesetzten Stopfen sind HOPPECKE Labyrinth-Stopfen. Diese Stopfen müssen nach dem Füllen der Zellen und während des regulären Betriebs auf den Batterien verbleiben. Zur Erhöhung der Sicherheit und Reduzierung der Wartungskosten empfehlen wir den Einsatz des HOPPECKE AquaGen® premium.top Rekombinationssystems.

Höhere Temperaturen verringern, tiefere Temperaturen erhöhen die Elektrolytdichte. Der zugehörige Korrekturfaktor beträgt 0,0007 kg/l je K.

Beispiel: Elektrolytdichte 1,23 kg/l bei 35 °C entspricht einer Dichte von 1,24 kg/l bei 20 °C.

5.2.3 Nach Abschluss der Standzeit

Nach dem Füllen der Zellen ist eine Standzeit von ieweils 2 Stunden einzuhalten.

Unmittelbar danach sind, je nach Gesamtanzahl, an mindestens 4 bis 8 Zellen (Pilotzellen) die Temperatur und die Dichte des Elektrolyten zu messen und im Inbetriebsetzungsbericht zu notieren.

Ist der Temperaturanstieg kleiner als 5 K und die Elektrolytdichte um nicht mehr als 0,02 kg/l unter die Dichte der Füllsäure zurückgegangen, so ist eine vereinfachte Inbetriebsetzungsladung gemäß *Kap.* 5.12.1 bzw. *Kap.* 5.12.2 ausreichend.

lst eine der Abweichungen größer, so ist eine erweiterte Inbetriebsetzungsladung gemäß Kap. 5.12.3 erforderlich.

Die Inbetriebsetzungsladung ist unmittelbar nach der Standzeit der zuletzt gefüllten Zelle durchzuführen.

Achtung

Baureihe	Fülldichte kg/l	Nenndichte kg/l
GroE	1,21	1,22
OPzS/power.bloc OPzS	1,23	1,24
max.power	1,23	1,24
OGi/OGi bloc/grid power v н (OGi bloc)	1,23	1,24
grid power v м (OSP.HB/OSP.HC)	1,23	1,24
grid power v н (OSP.XC)	1,26	1,27
sun power v L (OPzS solar.power/OPzS bloc solar.power)	1,23	1,24

Tab. 5-3: Elektrolydichte in kg/l bei 20 °C

7140203150 V1 4 (09 2018)

HOPPECKE POWER FROM INNOVATION

Montage-, Inbetriebsetzungs- und Gebrauchsanleitung für geschlossene ortsfeste Blei-Säure-Batterien

5.3 Ruhespannungsmessung durchführen

Bevor Sie die Batterien endgültig installieren, führen Sie eine Ruhespannungsmessung der einzelnen Zellen bzw. Blockbatterien durch, um deren Ladezustand und Funktion festzustellen.

Voll geladene Zellen haben bei 20 °C Elektrolyttemperatur die in *Tab.* 5–4 aufgelisteten Ruhespannungen.

Die Ruhespannungen der einzelnen Zellen einer Batterie dürfen untereinander um nicht mehr als 0.02 V abweichen.

Art der Zelle/Blockbatterie	Technische Schrift	Ruhespannung
GroE	DIN 40738	$(2,06 \pm 0,01) \text{ V/c}$
OPzS	DIN 40736 T1	(2,08 ± 0,01) V/c
power.bloc OPzS	DIN 40737 T3	$(2,08 \pm 0,01) \text{ V/c}$
max.power	DIN 40736 T2	(2,08 ± 0,01) V/c
OGi bloc	DIN 40739	$(2,08 \pm 0,01) \text{ V/c}$
grid power v м (OSP.HB/OSP.HC)		$(2,08 \pm 0,01) \text{ V/c}$
grid power v н (OGi bloc)		(2,08 ± 0,01) V/c
grid power v н (OSP.XC)		(2,11 ± 0,01) V/c
sun power v L (OPzS solar.power/OPzS bloc solar.power)	DIN 40736 T1/T3	(2,08 ± 0,01) V/c

Tab. 5-4: Ruhespannung für verschiedene Zellen/Blockbatterien

Für Blockbatterien gelten folgende maximale Abweichungen der Ruhespannung:

4 V Blockbatterie: 0,03 V/Block;6 V Blockbatterie: 0,04 V/Block;12 V Blockbatterie: 0,05 V/Block.

Höhere Temperaturen verringern, tiefere Temperaturen erhöhen die Ruhespannung. Bei einer Abweichung um 15 K von der Nenntemperatur ändert sich die Ruhespannung um 0,01 V/Zelle. Bei größeren Abweichungen ist eine Rücksprache mit Ihrem örtlichen HOPPECKE Vertragspartner notwendig.

5.4 Werkzeug und Ausrüstung zur Durchführung der Installation

Die Auslieferung der Batterien erfolgt auf Paletten, das erforderliche Zubehör liegt in separaten Verpackungseinheiten bei. Beachten Sie bitte alle Informationen aus den vorangegangenen Kapiteln.

Für die Installation benötigen Sie Ihre persönliche Schutzausrüstung, Sicherheitskleidung, Sicherheitswerkzeug und sonstige Ausstattung, wie in *Kap. 2.2* beschrieben.

Ausrüstung	Vorhanden?
Hubförderzeug (Gabelstapler, Hubwagen oder verfahrbarer Kleinkran oder Ähnliches zur Erleichterung der Batteriemontage)	
Schlagschnur und Kreide (optional)	
Wasserwaage aus Kunststoff (optional)	
Drehmomentschlüssel	
Unterlegelemente (max. 6 mm) zum Ausrichten der Gestelle (Schränke) (optional)	
Ratschenkasten (optional)	
Satz Gabelschlüssel und Ringschlüssel mit spannungsisolierten Griffen	
Schraubendreher mit spannungsisoliertem Griff	
Wischpapier oder Wischlappen (aus Baumwolle; keine Kunstfasertücher verwenden, da Gefahr von statischer Aufladung besteht), befeuchtet mit Wasser	
Bürste mit harten Kunststoffborsten (optional)	
Bandmaß aus Kunststoff	
Sicherheitsausrüstung und Sicherheitskleidung	
Batteriepolfett Aeronix® (nur für Zellen/Blöcke mit freiliegenden Bleipolen)	
Isoliermatten zum Abdecken leitfähiger Teile	

Tab. 5-5: Ausrüstung für die Installation

5.5 Gestelle installieren

Wir empfehlen die ordnungsgemäße Installation der Batterien in HOPPECKE Batteriegestellen bzw. -schränken. Bei Verwendung betreibereigener Lösungen kann die Gewährleistung der Batterie(n)

HOPPECKE liefert verschiedene Arten von Gestellen. Informationen zum Aufbau entnehmen Sie bitte auch der separaten Dokumentation, die jedem Gestell beiliegt.

Abb. 5-2: Stufengestell (links) und Etagengestell (rechts)

Beachten Sie die besonderen Anforderungen und Vorschriften bei Montage der Batteriegestelle in Erdbebengebieten!

28

Der Aufstellort muss die in Kap. 5.1 genannten Bedingungen erfüllen. Die in Tab. 5-1 genannten Mindestabstände sind einzuhalten.

Montage-, Inbetriebsetzungs- und Gebrauchsanleitung für geschlossene ortsfeste Blei-Säure-Batterien 7140203150 V1 4 (09 2018)

- 1. Markieren Sie anhand der Aufstellzeichnung (sofern vorhanden) die Umrisse der Gestelle auf der Aufstellfläche mit Kreide.
- 2. Die Aufstellfläche muss eben und eigensteif sein. Falls Unterlegelemente benutzt werden müssen, sollte deren Dicke 6 mm nicht überschreiten.
- 3. Stellen Sie die Gestelle probeweise auf und richten Sie sie horizontal aus.
- 4. Stellen Sie die Abstände der Auflageschienen so ein, dass sie den Zellen- bzw. Blockbatterieabmessungen entsprechen.
- 5. Prüfen Sie die Standfestigkeit der Gestelle sowie alle Schraub- bzw. Klemmverbindungen auf festen Sitz.
- 6. Erden Sie die Gestelle bzw. Gestellteile (falls vorgesehen).

Bei Einsatz von Holzgestellen: Montieren Sie an jedem Gestellstoß eine flexible Verbindung!

Achtung!

5.6 Schränke installieren

Alternativ zur Installation in Gestellen können die Batterien auch in HOPPECKE Batterieschränken eingebaut werden.

Entweder werden die Schränke mit bereits eingebauten Batterien angeliefert oder der Einbau der Batterien in die Schränke erfolgt vor Ort.

HOPPECKE liefert verschiedene Arten von Schränken.

Der Aufstellort muss die in Kap. 5.1 genannten Bedingungen erfüllen. Die in Tab. 5-1 genannten Mindestabstände sind einzuhalten.

Abb. 5-3: Batterieschrank

5.7 Montage der Batterien

Beim Anheben und Bewegen der Batterien muss mit größter Vorsicht vorgegangen werden, da eine herabstürzende Batterie Personen- und Materialschäden nach sich ziehen kann. Tragen Sie unbedingt Sicherheitsschuhe und Schutzbrille. Batterien immer nur von unten anheben und niemals an den Polen, da dies die Zerstörung der

29

Montage-, Inbetriebsetzungs- und Gebrauchsanleitung für geschlossene ortsfeste Blei-Säure-Batterien 7140203150 V1 4 (09 2018)

Batterie zur Folge hat. Prüfen Sie die Batterien vor der Montage auf einwandfreien Zustand (visuelle Prüfung). Bei der Montage der Batterien muss die VDE 0510 Teil 2: 2001-12 (entspr. IEC 62485-2) eingehalten werden, so sind z.B. elektrisch leitfähige Teile durch Isoliermatten abzudecken.

5.8 Allgemeine Hinweise zum Verschalten der Batterien

Bilden Sie beim Verschalten der Batterien immer zuerst die Reihenschaltungen und anschließend die Parallelverschaltung. Eine umgekehrte Vorgehensweise ist nicht zulässig. Prüfen Sie die Batterien vor dem Verschalten auf korrekte Polarität.

Achtung!

Zum Bilden der Reihenschaltungen werden die Batterien so angeordnet, dass der Plus-Pol der einen Batterie möglichst dicht beim Minus-Pol der nächsten Batterie liegt.

Bei paralleler Verschaltung von geschlossenen stationären Batterien müssen folgende Punkte beachtet werden:

- 1. Es sollten nur Batteriestränge mit gleicher Länge und Spannung miteinander verschaltet werden. Kreuzverschaltungen der einzelnen Stränge zwischen den Zellen sollten vermieden werden, es sei denn, die Stränge sind sehr lang. Kreuzverschaltungen maskieren die schlechten Zellen bzw. Blöcke und können Ursache für Überladung von einzelnen Batteriesträngen sein.
- 2. Es sollten nur Batterien vom gleichen Typ und identischem Ladezustand verschaltet werden (gleicher Batterietyp, Plattengröße und Plattenkonstruktion).
- 3. Die Umweltbedingungen für alle parallel verschalteten Stränge sollten identisch sein. Insbesondere sind Temperaturunterschiede zwischen den einzelnen Strängen/Batterien zu vermeiden.
- 4. Um eine gleichmäßige Stromverteilung zu gewährleisten, sollten die Verbinder und Endanschlüsse so ausgeführt werden, dass in den einzelnen Zuführungen zum Verbraucher gleiche Widerstandsverhältnisse herrschen.
- 5. Das Inbetriebsetzungsdatum der Batterien sollte identisch sein (Batterien gleichen Alters, gleicher Standzeit und gleichem Ladezustand).

Sind oben genannte Punkte nicht gegeben, müssen die Stränge separat geladen werden bevor die parallele Verschaltung vorgenommen wird.

Generell sollen Batterien mit möglichst kurzen Kabellängen verschaltet werden. Üblicherweise werden Zellen in Reihe mit wechselnder Polarität verschaltet, so dass sich eine möglichst kurze Verbinderlänge ergibt.

5.9 Batterien in die Gestelle einbringen

1. Bringen Sie auf den Schienen des Gestells etwas Schmierseife auf, damit sich die Batterien nach dem Absetzen leichter seitlich verschieben lassen.

Abb. 5-12: Behandlung der Abstellschienen

2. Positionieren Sie die Batterien nacheinander winklig und polrichtig in den Gestellen und entfernen Sie alle Transport- und Hebehilfen.

Bei großen Batterien ist es zweckmäßig, mit der Montage in der Gestellmitte zu beginnen Bei Verwendung von Etagengestellen montieren Sie zunächst die untere Ebene.

Achtung!

Beachten Sie beim Umgang mit den Batterien die Hinweise aus Kap. 5.7. Setzen Sie die Batterien vorsichtig auf den Schienen des Gestells ab, da sonst das

Batteriegehäuse Schaden nehmen kann.

Vermeiden Sie beim Absetzen der Batterien unter allen Umständen, dass diese aneinanderstoßen. Gefahr von Batteriezerstörung und auslaufender Säure!

Gefahr!

Die Batterieanschlusspole Plus-Pol und Minus-Pol einer Zelle oder eines Blocks dürfen unter keinen Umständen kurzgeschlossen werden. Dies gilt auch für den Plus- und Minus-Pol der gesamten Batterie bzw. des Batteriestrangs. Vorsicht vor allem bei Verwendung von Stufengestellen!

3. Verschieben Sie die Blöcke (bzw. Zellen) seitlich, bis der Abstand ca. 10 mm beträgt (Abb. 5-13). Falls Verbinder zum Einsatz kommen, geben diese den Abstand vor. Beim seitlichen Verschieben der Batterien im Gestell nicht mittig drücken, sondern im Bereich der (steiferen) Ecken. Nur von Hand drücken, keinesfalls Werkzeug benutzen!

Abb. 5-13: 10 mm Abstand zwischen den Batteriezellen

4. Nachdem alle Batterien aufgestellt sind, können Sie die Labvrinth-Stopfen gegen andere Stopfen (sofern geordert) austauschen. Solche Stopfen können sein: Keramik-Stopfen, Keramiktrichter-Stopfen, AquaGen® premium.top H/AquaGen® premium.top V Rekombinationssysteme. Bitte beachten Sie auch die Bedienungsanleitung für das AguaGen® premium.top Rekombinationssystem.

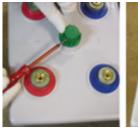


Abb. 5-14: Labyrinth-Stopfen (links) und AquaGen® premium.top Rekombinationssystem (rechts)

5. Zählen Sie zum Abschluss alle Zellen/Blöcke durch und prüfen Sie die Vollständigkeit der Installation.

31

5.10 Batterien verschalten

Die Batterien befinden sich nun in ihrer endgültigen Position und können verschaltet werden.

5.10.1 Anschlusspole

Für Batteriezellen mit teilweise freiliegendem Polblei: Die Batteriepole sind ab Werk mit dem Batteriepolfett Aeronix® gefettet. Prüfen Sie dennoch jeden einzelnen Pol hinsichtlich Beschädigung oder Oxidation. Ggf. den Pol mittels Bürste (mit harten Kunststoffborsten) reinigen und mit dem original Batteriepolfett nachfetten.

Bei Batteriezellen ohne kunststoffummantelte Pole (betrifft GroE 500 bis GroE 2600 Baujahr bis einschließlich 2016) sind die mitgelieferten blauen und roten Polabdeckringe als Berührungsschutz um die Pole zu legen. Dabei ist darauf zu achten, dass die kleinen Aussparungen nach unten zeigen. Der rote Ring ist für den positiven und der blaue Ring für den negativen Pol.

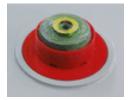


Abb. 5-15: Polabdeckung

5.10.2 Art der Verbindungskabel

Das gelieferte Batteriesystem ist dafür ausgelegt, für eine bestimmte Zeitdauer (Bereitschaftszeit) eine vorgegebene Leistung (kW) oder Strom (A) bei einer vorgegebenen Spannung (U) abzugeben. Diese Parameter (U, kW, A) sollten Ihnen bekannt sein. Falls dies nicht der Fall ist, nehmen Sie bitte Kontakt mit Ihrem örtlichen HOPPECKE Vertragspartner auf.

Das Batteriesystem wurde so ausgelegt, dass die o.g. Leistungsmerkmale an den Batterieklemmen zur Verfügung stehen. Der Spannungsabfall zwischen den Batterieklemmen und den Verbrauchern sollte daher auf ein Minimum beschränkt bleiben. Ein zu hoher Spannungsabfall kann zu einer verminderten Bereitschaftszeit des Batteriesystems führen.

Beachten Sie daher bitte folgende Hinweise:

- 1. Die Kabellänge zwischen Batterien und Ladegleichrichter/USV sollte möglichst kurz sein.
- 2. Der Kabelquerschnitt sollte so bemessen sein, dass auch bei großem Stromfluss kein nennenswerter Spannungsabfall auftritt. Hierzu sollte auf Basis des vorgesehenen Kabelguerschnitts einmal der Spannungsabfall bei Nennstrom gerechnet werden. Im Zweifelsfall wählen Sie den nächstgrößeren Kabelquerschnitt.

Die Verbindungskabel müssen kurzschlussfest oder doppelwandig isoliert sein. Das bedeutet:

- Isolationsfestigkeit des Kabels liegt oberhalb der max. möglichen Anlagenspannung oder
- minimaler Luftabstand zwischen Leitungen und elektrisch leitfähigen Teilen beträgt 100 mm oder
- es ist eine zusätzliche Isolation der Verbinder erforderlich.
- Vermeidung jeglicher mechanischer Belastung der Zellen bzw. Batteriepole. Kabel mit großen Querschnitten sollten durch Kabelbinder bzw. Kabelschellen abgefangen werden.

Die Verbindungskabel zwischen den Hauptanschlusspolen und der Ladegleichrichter bzw. der USV sollten als flexible Leiter ausgeführt werden.

5.10.3 Batterien mit Batterieverbindern verklemmen

Es gibt schraubbare Reihenverbinder, Stufenverbinder und Etagenverbinder (vgl. Abb. 5-16). Die Reihenverbinder werden zum Verbinden der einzelnen Zellen/Blockbatterien eingesetzt, die Stufenverbinder zum Verbinden der einzelnen Stufen untereinander (Einsatz von Stufengestellen) und die Etagenverbinder zum Verbinden der Etagen (Einsatz von Etagengestellen). Darüber hinaus gibt es Schweißverbinder (Sonderausführung) für die Einzelzellen GroE/OPzS/ OSP.HC/OSP.XC/max.power.

Abb. 5-16: Einsatz von Reihenverbindern und Stufenverbindern

Reihen-, Stufen- und Etagenverbinder sowie Endverbinder sind als Schraubverbindung ausgeführt. Die Befestigungsschrauben müssen nach dem Lösen einer Verbindung immer ersetzt werden.

5.10.4 Montage der Schraubverbinder

1. Die Batterien werden mittels der isolierten Reihenverbinder (Abb. 5-17) verschaltet. Bei der Reihenschaltung wird der Minus-Pol der einen Batterie mit dem Plus-Pol der nächsten Batterie verbunden, bis das Gesamtsystem die benötigte Spannung erreicht hat.

Achten Sie darauf, dass Sie die Pole nicht mechanisch beschädigen.

Achtung!

- 2. Bringen Sie die Verbinder an, wie in Abb. 5-15 gezeigt. Ziehen Sie die Schrauben zunächst nur mit der Hand an, um Zellen und Verbinder abschließend noch einmal ausrichten zu können.
- 3. Ziehen Sie die Schrauben mit einem Drehmomentschlüssel fest. Das vorgeschriebene Drehmoment beträgt 20 Nm ± 1 Nm. Ausnahmen: grid | power v м 105 (3 OSP.HC 105): Max. 15 Nm grid | power v m 6-50 und 6-100 (OSP.HB 6 V 50 Ah und 6 V 100 Ah): Max. 12 Nm

Abb. 5-17: Montage schraubbarer Verbinder

Gewissenhaftes Anziehen ist sehr wichtig, da sich ein loser Anschluss stark erwärmen kann mit der Folge von Entzündung bzw. Explosion.

Schrauben dürfen nur einmalig verwendet werden!

4. Ggf. Isolierabdeckungen für die Verbinder und die Endpole (Anschlussplatten) montieren.

5.10.5 Anschlussplatten an den Batterien anklemmen

Insgesamt gibt es 11 verschiedene Typen von Anschlussplatten (vgl. Abb. 5-16). Anschlussplatten kommen immer dann zum Einsatz, wenn Leitungen an Zellen mit mehreren Batteriepolen angeschlossen werden müssen.

Zum Anschließen der Leitungen an Zellen mit mehreren Batteriepolpaaren wird die Verwendung von original HOPPECKE Anschlussplatten dringend empfohlen. Bei Einsatz von anderen Lösungen droht möglicherweise Überhitzungs- und Brandgefahr durch erhöhte Übergangswider-

Montage von Standard-Anschlussplatten

1. Anschlusswinkel auf die Endpole der Batterie aufschrauben (vgl. Abb. 5-18).

zu können.

Achten Sie darauf, dass Sie die Pole nicht mechanisch beschädigen.

Abb. 5-18: 2 Montage der Endpole (Anschlussplatten)

- 2. Ziehen Sie die Schrauben zunächst nur mit der Hand an, um Zellen, Anschlusswinkel und Anschlussplatten abschließend noch einmal ausrichten
- 3. Anschlussplatte an die Anschlusswinkel mit einem Drehmoment von 20 Nm
- 4. Ziehen Sie anschließend die Polschrauben mit einem Drehmomentschlüssel fest. Das vorgeschriebene Drehmoment beträgt 20 Nm ± 1 Nm. Ausnahmen: grid | power v m 105 (3 OSP.HC 105): Max. 15 Nm grid | power v m 6-50 und 6-100 (OSP.HB 6 V 50 Ah und 6 V 100 Ah): Max. 12 Nm

Gewissenhaftes Anziehen ist sehr wichtig, da sich ein loser Anschluss stark erwärmen kann mit der Folge von Entzündung bzw. Explosion.

5.11 Batteriesystem an Gleichstromversorgung anschließen

Vor dem Anschluss an den Ladegleichrichter/die USV muss sichergestellt sein, dass alle Montagearbeiten ordnungsgemäß abgeschlossen wurden!

- 1. Messen Sie die Gesamtspannung (Sollwert = Summe der Ruhespannungen der einzelnen Zellen bzw. Blockbatterien).
- 2. Falls nötig: Versehen Sie die Zellen bzw. Blockbatterien an sichtbarer Stelle mit einer durchlaufenden Nummerierung (vom Pluspol der Batterie zum Minuspol). Nummernaufkleber werden von HOPPECKE mitgeliefert.

Montage-, Inbetriebsetzungs- und Gebrauchsanleitung für geschlossene ortsfeste Blei-Säure-Batterien 7140203150 V1 4 (09 2018)

- 3. Bringen Sie Polaritätsschilder für die Batterieanschlüsse an.
- 4. Füllen Sie das Typenschild in dieser Dokumentation (vgl. Kap. 1.2) aus.
- 5. Bringen Sie die Sicherheitskennzeichenschilder an (dies sind: "Gefahren vor Batterien", "Rauchen verboten" und "Bei Batteriespannnungen > 60 V Gefahr durch Spannung"), Gegebenenfalls sind Kennzeichnungen gemäß der örtlichen Bestimmungen zusätzlich anzubringen.
- 6. Bringen Sie die Aushänge (vgl. Kap. 0) an.
- 7. Falls nötig: Reinigen Sie die Batterien, die Gestelle und den Aufstellraum.

Batterien niemals mit Staubwedel oder trockenen Tüchern aus Kunstfaser reinigen! Gefahr von elektrostatischer Aufladung und Knallgasexplosion! Wir empfehlen für die Reinigung leicht feuchte Baumwolloder Papiertücher.

8. Schließen Sie das Batteriesystem über die Endanschlüsse an den Ladegleichrichter bzw. die USV an ("Plus an Plus" und "Minus an Minus") und fahren Sie fort, wie in Kap. 5.12 beschrieben.

Die Verbindungskabel zwischen den Endanschlüssen der Batterie und dem Ladegleichrichter/der USV sollten als flexible Leiter ausgeführt werden. Starre Leiter können Schwingungen übertragen, was u.U. zum Lösen der Anschlussverbindung führen kann.

Die Kabel müssen so unterstützt werden, dass keine mechanischen Kräfte auf die Anschlusspole übertragen werden können (Kabelpritschen, Kabelkanäle, Kabelschellen).

5.12 Inbetriebsetzungsladung (Erstladung)

In aller Regel sind die Batterien zum Zeitpunkt der Installation nicht mehr voll geladen. Dies gilt insbesondere für Batterien, die zuvor längere Zeit eingelagert wurden (vgl. Kap. 4). Um die Zellen möglichst schnell in einen optimalen Ladezustand zu bringen, sollten Sie zunächst eine Erstladung durchführen. Die Erstladung (zeitbegrenzt) ist eine sog. "Starkladung".

- 1. Bringen Sie in Erfahrung, welches die maximal erlaubte Spannung ist, die der Ladegleichrichter liefern kann, ohne die Peripherie zu beschädigen.
- 2. Dividieren Sie diesen maximalen Wert durch die Anzahl der in Reihe geschalteten Batteriezellen (also nicht Batterien). Der so ermittelte Wert ist die maximal mögliche Zellenspannung für die Erstladung.
- 3. Stellen Sie die Spannung so ein, dass sich mittlere Zellenspannungen von max, 2.40 V pro Zelle ergeben. Die Erstladung kann bis zu 72 Stunden dauern.

Es ist wichtig, dass die erste Ladung vollständig durchgeführt wird. Dies ist nur bei einer Ladespannung größer 2,35 V/Zelle möglich. Unterbrechungen sind möglichst zu vermeiden. Die Inbetriebsetzung ist in dem Inbetriebsetzungsbericht (vgl. Prüfprotokoll) zu protokollieren.

4. Während der Inbetriebsetzung sind an den Pilotzellen die Zellenspannung und nach Abschluss der Inbetriebsetzung an allen Zellen die Zellenspannung, die Elektrolytdichte und die Temperatur zu messen und im Inbetriebsetzungsbericht mit der Zeitangabe zu protokollieren.

Die Elektrolyttemperatur darf 55 °C nicht überschreiten, gegebenenfalls ist das Laden zu unterbrechen, bis die Elektrolyttemperatur unter 45 °C gesunken ist.

Gefahr!

Die AquaGen® premium.top Rekombinationssysteme sind überlastsicher und können während der Inbetriebsetzungsladung auf den Batteriezellen verbleiben, sofern die Ladespannung <= 2,4 V/Zelle ist. Andernfalls müssen die AquaGen® Rekombinationssysteme entfernt werden. Siehe auch Montage- und Betriebsanleitung zum AquaGen® Rekombinationssystem.

Es sind alternativ mehrere Arten der Inbetriebsetzungsladung möglich.

Montage-, Inbetriebsetzungs- und Gebrauchsanleitung für geschlossene ortsfeste Blei-Säure-Batterien 7140203150 V1 4 (09 2018)

5.12.1 Inbetriebsetzungsladung mit konstanter Spannung (IU-Kennlinie)

- Es ist eine Ladespannung von 2,35-2,4 V/Zelle erforderlich.
- Der Ladestrom zu Beginn der Ladung sollte mindestens 5 A je 100 Ah C, betragen. Die Elektrolytdichte steigt während der Ladung nur langsam an, daher kann die Ladezeit bis zum Erreichen einer minimalen Elektrolytdichte von Nennelektrolytdichte -0,01 kg/l mehrere Tage dauern.
- Danach ist auf die Erhaltungsladespannung gemäß Gebrauchsanweisung umzuschalten.
- Die Dichte des Elektrolyten steigt während des Betriebes auf den Nennwert an.
- Das Ende der Inbetriebsetzungsladung ist erreicht, wenn die Zellenspannungen innerhalb von 2 Stunden nicht mehr ansteigen.

5.12.2 Inbetriebssetzungsladung mit konstantem (I-Kennlinie) oder fallendem Strom (W-Kennlinie)

Die maximal zulässigen Ströme sind der Tab. 5-6 zu entnehmen.

Kennlinie I-Kennlinie	Ladestrom 5 A
W-Kennlinie bei	
2,0 V/Zelle	14 A
2,4 V/Zelle	7,0 A
2,65 V/Zelle	3,5 A

Tab. 5-6: Maximal zulässige Ladeströme in A je 100 Ah C10 für I- und W-Ladung

Es ist so lange zu laden, bis

- alle Zellen eine Spannung von mindestens 2,6 V erreicht haben,
- die Dichte des Elektrolyten während weiterer 2 Stunden nicht mehr ansteigt.

Danach ist auf die Erhaltungsladespannung gemäß Gebrauchsanweisung umzuschalten.

5.12.3 Erweiterte Inbetriebssetzungsladung

Durch lange Lagerung oder durch klimatische Einflüsse (Feuchtigkeit, Temperaturschwankungen) verringert sich der Ladezustand der Zellen. Dadurch wird eine erweiterte Inbetriebsetzungsladung erforderlich.

Gehen Sie für die erweiterte Inbetriebsetzungsladung folgendermaßen vor:

- 1. Laden mit 15 A je 100 Ah C., bis 2,4 V/Zelle erreicht sind (ca. 3-5 Stunden).
- 2. 14 Stunden laden mit 5 A je 100 Ah C₁₀ (Spannung übersteigt 2,4 V/Zelle).
- 3. Eine Stunde Pause.
- 4. 4 Stunden laden mit 5 A je 100 Ah C₁₀.

Punkt 3, und 4, sind so oft zu wiederholen, bis alle

- Zellen eine Spannung von mindestens 2,6 V erreicht haben,
- die Elektrolytdichte bei allen Zellen auf den Nennwert ± 0,01 kg/l angestiegen ist und diese Werte während weiterer 2 Stunden nicht mehr steigen.

Danach ist auf die Erhaltungsladespannung gemäß Kap. 6.2.4 umzuschalten.

5.13 Elektrolytstandsprüfung

Falls der Elektrolytstand vor Inbetriebnahnme unter der Max.-Markierung eingestellt war, ist nach der Inbetriebnahme Schwefelsäure nachzufüllen, bis die obere Elektrolytstandmarkierung erreicht ist.

5.14 Elektrolytdichteausgleich

Ist die Elektrolytdichte am Ende der Inbetriebsetzung zu hoch, so ist ein Teil des Elektrolyten durch gereinigtes Wasser nach DIN 43530 Teil 4 oder IEC 60993-1 zu ersetzen. Die Elektrolytdichte der einzelnen Zellen soll nicht mehr als 0,01 kg/l voneinander abweichen. Bei größeren Abweichungen ist ein Elektrolytdichteausgleich mit einer anschließenden Ausgleichsladung gemäß Gebrauchsanweisung durchzuführen. Der Säurestand ist auf die obere Elektrolytstandsmarke einzustellen.

5.15 Tausch einer Zelle/Batterie im Strang (Ersatzzelle trocken, formiert)

Im Falle des Tausches einer Zelle oder eines Blocks in einem Batteriestrang und die Austauschzelle ist trocken/ formiert, ist das Vorgehen in diesem Kapitel beschrieben.

5.15.1 Vor dem Tausch der Zellen/Batterie

Hierbei ist unbedingt zu beachten, dass der Tausch stromlos abläuft. Vor dem Lösen der Verbinder ist der Stromkreis abzuschalten.

Achtung!

Achtung!

5.15.2 Bewegen der Zellen/Batterien

Nach dem Lösen der Verbinder müssen Zellen/Batterien bewegt werden, bitte dazu die Anleitung unter dem Kapitel 5.7 beachten. Besonders ist das Heben der Zellen/ Batterien an den Polen untersagt, da das zur Zerstörung der Zellen/Batterien führt.

5.15.3 Füllen der Zellen/Batterien mit Säure

Hierzu die Anweisung aus dem Kapitel 5.2.2 beachten und danach vorgehen.

5.15.4 Die Inbetriebsetzung

Die Zelle/Batterie darf nicht im Verbund in Betrieb gesetzt werden, da der Ladefaktor über 1,2 erreicht wird und eine sehr hohe Wasserstoffkonzentration gebildet werden

Die Inbetriebsetzung muss an einem gesonderten Ladekreis durchgeführt werden.

Regime-Inbetriebsetzung

Das Vorgehen ist in den Kapiteln 5.12.1, 5.12.2 und 5.12.3 zu entnehmen.

5.15.5 Prüfung des Elektrolyts (Level)

Bitte die Vorgehensweise aus dem Kapitel 5.13 befolgen.

5.15.6 Elektrolytdichteausgleich

Siehe Kapitel 5.14.

5.15.7 Montage der Schraubverbinder

Befolgen Sie dazu die Instruktionen im Kapitel 5.10.4.

Der Hinweis bezüglich der mechanischen Schädigung der Pole ist besonders zu beachten (Kapitel 5.7).

Achtung

6 Betrieb der Batterien

Für den Betrieb von ortsfesten Batterieanlagen gelten die DIN VDE 0510 Teil 1, die IEC 62485-2 und IEEE 484.

Der empfohlene Betriebstemperaturbereich für Bleibatterien beträgt 10 °C bis 30 °C. Die technischen Daten gelten für die Nenntemperatur 20 °C. Der ideale Betriebstemperaturbereich beträgt 20 °C \pm 5 °C. Höhere Temperaturen verkürzen die Brauchbarkeitsdauer.

Niedrigere Temperaturen verringern die verfügbare Kapazität. Das Überschreiten der Grenztemperatur von 55 °C ist unzulässig.

Bei Nutzung des HOPPECKE AquaGen® premium.top Rekombinationssystems muss die Betriebstemperatur des Rekombinationssystems immer >= 5 °C liegen. Hiermit verhindert man Vereisungen an der internen Keramikkomponente, und gewährleistet eine optimale Rekombination.

6.1 Entladen

Die dem Entladestrom zugeordnete Entladeschlussspannung der Batterie darf nicht unterschritten werden.

Sofern keine besonderen Angaben des Herstellers vorliegen, darf nicht mehr als die Nennkapazität entnommen werden. Laden Sie nach Entladungen (auch Teilentladungen) die Batterie sofort vollständig auf.

6.2 Laden - Allgemeines

Das Laden erfolgt je nach Anwendungsfall bei den in Kap. 6.2.1 bis Kap. 6.2.4 genannten Betriebsarten.

Anwendbar sind alle Ladeverfahren mit ihren Grenzwerten gemäß DIN 41773 (IU-Kennlinie), DIN 41774 (W-Kennlinie) und DIN 41776 (I-Kennlinie).

Überlagerte Wechselströme

Je nach Ladegeräteausführung und Ladekennlinie fließen während des Ladevorgangs Wechselströme durch die Batterie, die dem Ladegleichstrom überlagert sind. Diese überlagerten Wechselströme und die Rückwirkungen von Verbrauchern führen zu einer zusätzlichen Erwärmung der Batterie(n) und zyklischen Belastung der Elektroden. Eine vorzeitige Alterung der Batterie kann die Folge sein.

Bei einer Ladespannung über 2,4 V/Zelle dürfen 10 A je 100 Ah Nennkapazität nicht überschritten werden. Im vollgeladenen Zustand (Ladeerhaltungsbetrieb) bei einer Ladespannung von 2,23 bis 2,25 V/Zelle darf der Effektiwert des Wechselstroms 5 A je 100 Ah Nennkapazität nicht überschreiten!

Empfohlen wird für geschlossene Batterien im Ladeerhaltungsbetrieb ein maximaler Effektivwert des Wechselstroms von 2 A je 100 Ah Nennkapazität, um die optimale Brauchbarkeitsdauer der Batterie zu erzielen

Temperaturabhängige Anpassung der Ladespannung

Betriebstemperatur zwischen 10 °C bis 30 °C: keine Anpassung nötig. Betriebstemperatur <10 °C oder >30 °C: Anpassung nötig. Korrekturfaktor: -0,004 V/Zelle je K. Betriebstemperatur ständig >40 °C: Anpassung nötig. Korrekturfaktor: -0,003 V/Zelle je K.

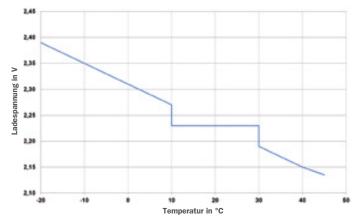


Fig. 6-1: Temperaturabhängige Anpassung der Ladeerhaltungsspannung

Maximale Ladeströme

Die Batterie kann bis zu einer Spannung von 2,4 V/Zelle grundsätzlich den maximalen Ausgangsstrom des Ladegerätes aufnehmen. Bei Einsatz von Ladegeräten mit IU-Kennlinnie nach DIN 41773 ist ein Ladestrom zwischen 10 A und 20 A je 100 Ah Batteriekapazität (C_{10}) zu empfehlen. Bei Überschreitung der Ladespannung von 2,4 V/Zelle entsteht eine höhere Wasserzersetzung und Belastung der Elektroden.

Die nachfolgend in Tab. 6-1 angegebenen Ladeströme je 100 Ah Nennkapazität dürfen beim Laden mit Ladespannung von mehr als 2,4 V/Zelle nicht überschritten werden.

Lade-	Baureihen		Spannung
verfahren	OPzS, OPzS power.bloc, max.power, OGi bloc, grid power v м (OSP.HB/OSP.HC), grid power v н (OGi bloc/OSP.XC), sun power v L (OPzS solar.power/OPzS bloc solar.power)	GroE	
I-Kennlinie (DIN 41776)	5,0 A	6,5 A	2,6 bis 2,75 V/Zelle
W-Kennlinie (DIN 41774)	7,0 A 3,5 A	9,0 A 4,5 A	bei 2,4 V/Zelle bei 2,65 V/Zelle

Tab. 6-1: Ladeströme

Abb. 6-2: Aräometer

Abhängigkeit der Elektrolytdichte von der Temperatur

Der Elektrolyt ist verdünnte Schwefelsäure. Die Nenndichte des Elektrolyten bezieht sich auf 20 °C und Nennelektrolytstand in vollgeladenem Zustand. Die maximal zulässige Abweichung beträgt \pm 0,01 kg/l.

Höhere Temperaturen verringern die Elektrolytdichte, tiefere Temperaturen erhöhen die Elektrolytdichte. Der zugehörige Korrekturfaktor beträgt 0,0007 kg/l je K.

Beispiel: Elektrolytdichte 1,23 kg/l bei 35 °C entspricht einer Dichte von 1,24 kg/l bei 20 °C bzw. Elektrolytdichte 1,25 kg/l bei 5 °C entspricht einer Dichte von 1,24 kg/l bei 20 °C.

Elektrolytdichte messen: Voraussetzungen

Die Elektrolytdichte sinkt während des Entladevorgangs der Batterie und steigt während des Ladevorgangs. Da sie darüber hinaus auch noch von der Temperatur abhängt (siehe oben) und vom Füllstand in der Batterie, sollten beim Messen der Dichte diese beiden Werte stets auch ermittelt und notiert werden.

Voraussetzungen für die Messung der Elektrolytdichte mittels Aräometer:

- Der Batterie wurde in den letzten Tagen kein Wasser zugeführt (Elektrolytschichtung). Wasser hat eine geringere Dichte als Schwefelsäure (ist also leichter), daher benötigt die Durchmischung Zeit.
- Die Batterie wurde mindestens 72 Stunden lang geladen.
- Der Elektrolytstand in der Batterie ist korrekt.

Die Temperatur beträgt 20 °C. Sollte dies nicht der Fall sein, muss entsprechend umgerechnet werden (siehe oben).

6.2.1 Bereitschaftsparallelbetrieb

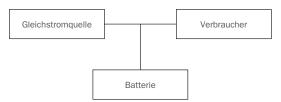


Abb. 6-3: Bereitschaftsparallelbetrieb

Charakteristisch für diese Betriebsart sind:

- Verbraucher, Gleichstromguelle und Batterie sind ständig parallel geschaltet.
- Die Ladespannung ist die Betriebsspannung der Batterie und gleichzeitig die Anlagenspannung.
- Die Gleichstromquelle (Ladegleichrichter) ist jederzeit im Stande, den maximalen Verbraucherstrom und den Batterieladestrom zu liefern.
- Die Batterie liefert nur dann Strom, wenn die Gleichstromquelle ausfällt.
- Die einzustellende Ladespannung beträgt (siehe Tab. 6-2) x Anzahl der in Reihe geschalteten Zellen (gemessen an den Endpolen der Batterie).
- Zur Verkürzung der Wiederaufladezeit kann eine Ladestufe verwendet werden, bei der die Ladespannung (2,33 bis 2,4 V) x Zellenzahl beträgt (Bereitschaftsparallelbetrieb mit Wiederaufladestufe).
- Es folgt nach dem Laden eine automatische Umschaltung auf die Ladespannung von (siehe *Tab.* 6–2) x Anzahl der in Reihe geschalteten Zellen.

Batterietyp	Ladeerhaltungsspannung
GroE	2,23 ± 1% V/Zelle
OPzS	2,23 ± 1% V/Zelle
power.bloc OPzS	2,23 ± 1% V/Zelle
max.power	2,23 ± 1% V/Zelle
OGi bloc	2,23 ± 1% V/Zelle
grid power v м (OSP.HB/OSP.HC)	2,23 ± 1% V/Zelle
grid power v н (OGi bloc)	2,23 ± 1% V/Zelle
grid power v н (OSP.XC)	2,25 ± 1% V/Zelle
sun power v L (OPzS solar.power/OPzS bloc solar.power)	2,23 ± 1% V/Zelle

Tab. 6-2: Ladeerhaltungsspannung im Bereitschaftsparallelbetrieb

6.2.2 Pufferbetrieb

Charakteristisch für diese Betriebsart sind:

- Verbraucher, Gleichstromquelle und Batterie sind ständig parallel geschaltet.
- Die Ladespannung ist die Betriebsspannung der Batterie und gleichzeitig die Anlagenspannung.
- Die Gleichstromquelle ist nicht in der Lage, jederzeit den maximalen Verbraucherstrom zu liefern. Der Verbraucherstrom übersteigt zeitweilig den Nennstrom der Gleichstromquelle. Während dieser Zeit liefert die Batterie Strom.
- Die Batterie ist daher nicht jederzeit voll geladen.
- Deshalb ist die Ladespannung in Abhängigkeit von der Zahl der Entladungen auf (2,25 bis 2,30 V) x Anzahl der in Reihe geschalteten Zellen einzustellen.

6.2.3 Umschaltbetrieb (Lade-/Entladebetrieb)

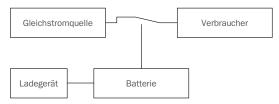


Abb. 6-4: Umschaltbetrieb

Charakteristisch für diese Betriebsart sind:

- Beim Laden ist die Batterie vom Verbraucher getrennt.
- Die Ladespannung der Batterie beträgt gegen Ende der Ladung 2,6 2,75 V/Zelle (abhängig von Entladetiefe und Anzahl der zyklischen Belastungen).
- Der Ladevorgang muss überwacht werden.
- Nach Erreichen des Volladezustandes ist die Ladung zu beenden oder auf Erhaltungsladen gemäß Kap. 6.2.4 zu schalten.
- Die Batterie kann je nach Bedarf auf den Verbraucher geschaltet werden.

HOPPECKE POWER FROM INNOVATION

Montage-, Inbetriebsetzungs- und Gebrauchsanleitung für geschlossene ortsfeste Blei-Säure-Batterien 7140203150 V1.4 (09.2018)

6.2.4 Erhaltungsladen

Das Erhaltungsladen dient der Erhaltung des Volladezustandes der Batterie(n) und entspricht weitgehend der Ladeart, wie in Kap. 6.2.1 beschrieben.

Benutzen Sie ein Ladegerät mit den Festlegungen nach DIN 41773 (IU-Kennlinie). Stellen Sie es so ein, dass sich die folgenden mittleren Zellenspannungen ergeben:

- grid | power v H (OSP.XC-Zellen) und USV bloc Blockbatterien: 2.25 V ± 1%:
- Andere geschlossene Produktreihen von HOPPECKE: 2.23 V ± 1%.

Beispiel: Nominalspannung der Batterie: 60 V, d. h. Ladespannung des Ladegerätes für Ladeerhaltungsbetrieb beträgt $30 \times$ Ladeerhaltungsspannung je Zelle. Z. B. $30 \times$ Batteriezellen OPzS ergeben eine Ladespannung von $30 \times 2,23 \text{ V/Zelle} = 66,9 \text{ V} +/-1\%$ (= max. 67,67 V/min. 66,23 V).

6.2.5 Ausgleichsladen (Korrekturladen)

Unter üblichen Umständen sind Ausgleichsladungen nicht erforderlich.

Falls es jedoch zwischen den einzelnen Zellen zu unzulässig großen Differenzen der Zellenspannung unter Ladeerhaltung kommt (siehe *Tab.* 6–3), muss eine Ausgleichsladung erfolgen.

	Тур		Ladeerhaltungsspannung	
GroE, grid power v м (OSP.HC/OSOGI bloc, grid power v н (OGi blosun power v L (OPzS solar.power/	c), max.power,		2,23 V/Ze	elle +/- 1%
grid power v H (OSP.XC)			2,25 V/Zelle +/- 1%	
Spannung pro Einheit	2 V	4 V	6 V	12 V
Toleranz Ladeerhaltungsspan- nung für Einzelzellen/Blöcke (Abweichung von mittlerer Ladeerhaltungsspannung)	-0,05 V/+0,10 V	-0,07 V/+0,14 V	-0,09 V/+0,17 V	-0,12 V/+0,25 V

Tab. 6-3: Ladeerhaltungsspannungen

Beispiel für OPzS Zellen: Ladeerhaltungsspannung max. = 2,33 V/Zelle und min. 2,18 V/Zelle (bei mittlerer Ladeerhaltungsspannung von 2,23 V/Zelle).

Ausgleichsladungen sind ebenfalls erforderlich nach Tiefentladungen, nach ungenügenden Ladungsvorgängen, wenn die Zellen längere Zeit ungleichmäßig warm waren oder wenn

- die Elektrolytdichte (temperaturbereinigt) in einer oder mehreren Zellen um mehr als 0,01 kg/l vom Sollwert abweicht.
- der Spannungswert einer oder mehrere Zellen während des Betriebs unter die kritische Schwelle entsprechend der Angabe in Tab. 6-3 gesunken ist.

Wegen möglicher Überschreitungen der zulässigen Verbraucherspannungen ist vorher zu klären, ob die Verbraucher für die Dauer der Ausgleichsladung freigeschaltet werden können.

Führen Sie die Ausgleichsladung folgendermaßen durch:

- 1. Laden mit konstanter Spannung von max. 2,4 V/Zelle bis zu 72 Stunden.
- Unterbrechen Sie den Ladevorgang beim Überschreiten der max. Temperatur von 55 °C oder fahren Sie mit vermindertem Strom fort. Schalten Sie alternativ vorübergehend auf "Erhaltungsladen", damit die Temperatur absinkt.
- 3. Das Ende der Ausgleichsladung ist erreicht, wenn die Zellenspannungen innerhalb von 2 Stunden nicht mehr ansteigen.

Empfohlenes Ladverfahren bei Erreichen der max. Einlagerungsdauer: Siehe $\mathit{Kap.}\ 4$.

Montage-, Inbetriebsetzungs- und Gebrauchsanleitung für geschlossene ortsfeste Blei-Säure-Batterien 7140203150 V1.4 (09.2018)

42

7 Einstellungen zum Laden von HOPPECKE

sun | power v L (OPzS solar.power/OPzS bloc solar.power) Batterien

Dieses Kapitel beinhaltet Anweisungen zum Laden der HOPPECKE sun power v L (OPzS solar.power/OPzS bloc solar.power) Batteriezellen und -blöcke in Solaranwendungen.

7.1 Lade- und Entladeparameter

Parameter	sun power v L OPzS solar.power ohne Elektrolytumwälzpumpe	sun power v L OPzS solar.power mit Elektrolytumwälzpumpe
Batterieladung		
Max. Ladestrom	6 x I10	6 x I10
Standardladung (regelmäßiger Zyklenbetrieb)		
Kennlinie	IU (mit anschl. Umschal- tung auf Float)	IU (mit anschl. Umschal- tung auf Float)
Max. Strom (Sicherungen und Kabellängen beachten) Hinweis: Leitungswiderstand muss konfigurierbar sein!	6 x I10	6 x I10
Max. Spannung Absorptionsphase	2,55 V/Z	2,4 V/Z
Empfohlene Absorptionszeit	180 min	180 min
Absorptionszeit Vollladung	6 h	6 h
Häufigkeit/Zyklus anhand Zeitperiode/Vollladung	14 Tage	14 Tage
Ladeerhaltung	Keine Umschaltung aufgrund Schwellwert für Ladestrom!	Keine Umschaltung aufgrund Schwellwert für Ladestrom!
Spannung	2,23 V/Zelle +/- 1%	2,23 V/Zelle +/- 1%
Temperaturkorrektur	<20 °C: +3 mV/K >=20 °C: 0 mV/K	<20 °C: +3 mV/K >=20 °C: 0 mV/K
Ausgleichsladung (Häufigkeit je nachdem welches de	er nachfolgenden Kriterien z	ruerst eintritt)
Häufigkeit/Zyklus anhand Kapazitätsdurchsatz	10 x Cn	10 x Cn
Häufigkeit/Zyklus anhand Zeitperiode	40 Tage	40 Tage
Kennlinie	IU/IUIa (mit anschl. Umschal- tung auf Float)	IU/IUIa (mit anschl. Umschal- tung auf Float)
Hinweis zur Kennlinie	Bei IUIa Kennlinie: Strom in Ia Phase max. 5 A/100 Ah C ₁₀ für 2 bis 4 h	Bei IUIa Kennlinie: Strom in la Phase max. 5 A/100 Ah C ₁₀ für 2 bis 4 h
Max. Strom (Sicherungen und Kabellängen beachten)	6 x I10	6 x I10

Max. Spannung Absorptionsphase	2,55 V/Z bei IU-Kennline 2,4 V/Z bei IUIa-Kennlinie	2,55 V/Z bei IU-Kennline 2,4 V/Z bei IUIa-Kennlinie
Absorptionszeit	8 h	6 h
Batterieentladung		
Entladecharakteristik	Siehe Datenblatt und Projektierungsdaten	Siehe Datenblatt und Projektierungsdaten
Empfohlene (DOD) Zyklenbetrieb	50%	50%
Max. Entladetiefe (DOD), unmittelbare Wiederaufladung notwendig	80%	80%
Max. Entladestrom Hinweis: Leitungswiderstand muss konfigurierbar sein!	Begrenzt durch BattFuse und Verkabelung	Begrenzt durch BattFuse und Verkabelung
Vorschlag für Kennlinie zum Tiefentladeschutz [U=f(I)] Hinweis: Tiefentladeschutz durch Abschaltung bei nur einem konstanten Spannungswert unzulässig!	1,98 V/Z bei I<=0,16 x I10 1,81 V/Z bei I>=4 x I10 lineare Interpolation bei 0,16 x I10 < I < 4 x I11	1,98 V/Z bei I<=0,16 x I10 1,81 V/Z bei I>=4 x I10 lineare Interpolation bei 0,16 x I10 < I < 4 x I12

Tab. 7-1: Lade- und Entladeparameter

7.2 Wechselströme

Abhängig von dem Ladegerät, dessen Spezifikation und Charakteristika besteht die Möglichkeit, dass überlagerte Wechselströme zum Ladestrom beitragen. Wechselströme und die entsprechende Reaktion der angeschlossenen Verbraucher können zu einer zusätzlichen Erhöhung der Batterietemperatur führen, und dadurch die Brauchbarkeitsdauer der Batterie verkürzen (Mikro-Zyklen).

Der Wechselstrom darf 5 A (RMS)/100 Ah Nominalkapazität nicht überschreiten. Um eine optimale Brauchbarkeitsdauer für geschlossene Blei-Säure-Batterien bei Ladeerhaltung zu erhalten, empfehlen wir einen maximalen effektiven Wechselstrom von 2 A pro 100 Ah Nominalkapazität (C₁₀).

7.3 Wasserverbrauch

Jede Blei-Säure-Batterie zersetzt eine gewisse Menge Wasser in Wasserstoff und Sauerstoff. Dieser Effekt steigt mit der Anzahl der Ladungen und Entladungen, mit steigender Spannung sowie steigender Batterietemperatur.

44

7140203150 V1.4 (09.2018)

7.4 Einfluss der Temperatur auf Funktion und Brauchbarkeitsdauer der Batterie

7.4.1 Temperatureinfluss auf die Batteriekapazität

Die verfügbare Batteriekapazität ist stark abhängig von der Umgebungstemperatur. Die verfügbare Kapazität steigt mit steigender Temperatur und umgekehrt, wie Abb. 7–6 zeigt. Dies sollte in der Batterieauslegung berücksichtigt werden.

Temperaturbereich von sun | power v L (OPzS solar.power/OPzS bloc solar.power) Batterien:

Möglicher Temperaturbereich: -20 °C bis 45 °C Empfohlener Temperaturbereich: 10 °C bis 30 °C

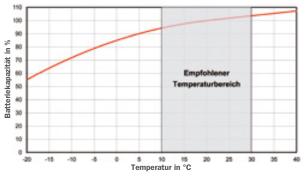


Abb. 7–6: **sun** | power v L (OPzS solar.power/OPzS bloc solar.power): Abhängigkeit der Batteriekapazität von der Temperatur

7.4.2 Einfluss der Temperatur auf die Brauchbarkeitsdauer

Da die Korrosionsvorgänge in einer Blei-Säure-Batterie stark von der Umgebungstemperatur abhängen, korreliert die Design-Lebensdauer einer Batterie direkt mit der Umgebungstemperatur.

Als Daumenregel kann man davon ausgehen, dass eine Erhöhung der Raumtemperatur um 10 K die Korrosion verdoppelt (Arrhenius Gesetz). Daher halbiert sich die kalendarische Design-Lebensdauer einer Batterie bei einem Temperaturanstieg von 10 K.

Das folgende Diagramm (siehe Abb. 7-7) zeigt diesen Zusammenhang für den Ladeerhaltungsbetrieb. Zusätzlich muss die Haltbarkeit in Zyklen berücksichtigt werden.

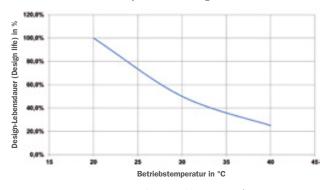


Abb. 7–7: Design-Lebensdauer (Design life) einer $sun \mid$ power $v \perp$ (OPzS solar.power) Zelle als Funktion der Umgebungstemperatur (USV-Anwendung mit Ladeerhaltungsspannung 2,23 V/Zelle)

HOPPECKE POWER FROM INNOVATION

Montage-, Inbetriebsetzungs- und Gebrauchsanleitung für geschlossene ortsfeste Blei-Säure-Batterien 7140203150 V1.4 (09.2018)

7.5 Einfluss der Zyklen auf das Batterieverhalten

7.5.1 Die Haltbarkeit in Zyklen ist abhängig von der Entladetiefe (DoD)

Die Haltbarkeit in Zyklen ist eine definierte Anzahl an Entladungen und Ladungen einer Zelle bis die verbleibende Batteriekapazität unter 80% der Nominalkapazität (C_{10}) fällt. Die Haltbarkeit in Zyklen einer Blei-Säure-Batterie hängt direkt von der regulären Entladetiefe während dieser Zyklen ab.

Abhängig von verschiedenen Batterietypen und dem Design der Platten und Elektroden kann die Haltbarkeit in Zyklen stark variieren.

Das folgende Diagramm (*Abb.* 7–8) zeigt das Zyklenverhalten der HOPPECKE **sun** | power v L (OPzS solar.power) unter idealen Betriebsbedingungen. Die Haltbarkeit in Zyklen basiert auf einer Entladung pro Tag. Die Haltbarkeit in Zyklen kann unter Erhaltungsladungsbedingungen die angegebene Design-Lebensdauer nicht überschreiten.

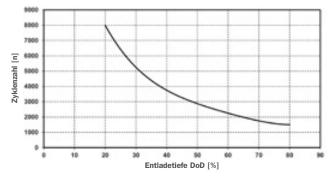


Abb. 7–8: Haltbarkeit in Zyklen einer sun | power v⊥ (OPzS solar.power) als Funktion der Entladetiefe (bei 20 °C)

7.5.2 Haltbarkeit in Zyklen in Abhängigkeit der Umgebungstemperatur

Da die Design-Lebensdauer (Design life) wesentlich von der Temperatur abhängt, wird auch die Haltbarkeit in Zyklen davon beeinflusst. *Abb.* 7–9 veranschaulicht diese Abhängigkeit für eine Batterie mit einer regulären Entladetiefe von 80%.

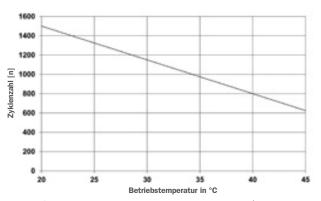


Abb. 7–9: Tendenzielle Haltbarkeit in Zyklen einer $sun \mid power \ v \ \ \ (OPzS \ solar.power)$ als Funktion der Umgebungstemperatur

Das folgende Diagramm (siehe *Abb.* 7–10) zeigt die tendenzielle Abhängigkeit der Haltbarkeit in Zyklen von der Entladetiefe und der Umgebungstemperatur.

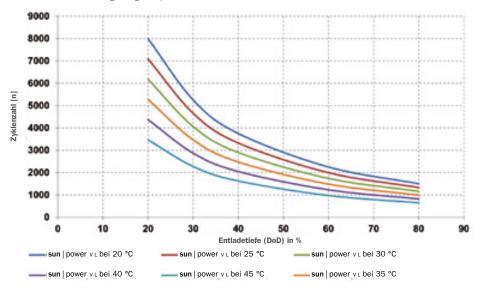


Abb. 7–10: Haltbarkeit in Zyklen einer **sun** | power v L (OPzS solar.power) in Abhängigkeit von der Entladetiefe und der Temperatur

7.5.3 Gefrierpunkt des Elektrolyten beeinflusst durch die Entladetiefe (DoD)

Der Gefrierpunkt des Elektrolyten (Schwefelsäure) steigt mit steigender Entladetiefe.

Sollte die Batterie bei Temperaturen unter 0 °C betrieben werden, so muss die maximale Entladetiefe verringert werden, um das Gefrieren des Elektrolyten und Schäden am Zellengefäß zu vermeiden. *Abb. 7–11* zeigt diesen Zusammenhang.

Beispiel: Ist die Entladetiefe unter 60%, so darf die Betriebstemperatur nicht unter -18,4 °C sinken.

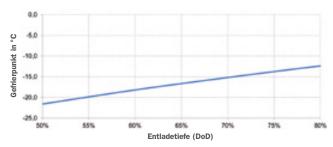


Abb. 7–11: Gefrierpunkt des Elektrolyten in Abhängigkeit von der Entladetiefe (DoD)

7.6 Bemerkungen zur Gewährleistung

Oben genannte Informationen zur Batterieleistung und Brauchbarkeitsdauer, besonders im Bezug auf den Ladevorgang und den Einfluss der Temperatur und der Zyklen, beeinflussen auch die Gewährleistung. Um einen Gewährleistungsfall geltend zu machen, muss der Kunde/Batteriebetreiber nachweisen, dass die genannten Parameter in den erlaubten bzw. empfohlenen Bereichen waren. Die entsprechenden Protokolle müssen dem Batteriehersteller zur Verfügung gestellt werden. Diese Protokolle müssen eindeutig nachweisen, dass die Brauchbarkeitsdauer der betroffenen Batterie nicht durch die Anwendung und der zugehörigen Parameter verkürzt wurde. Die zu erwartende Brauchbarkeitsdauer, die vom Batteriehersteller angegeben ist, ist ausschließlich unter optimalen Bedingungen gültig. Deshalb ist es nicht möglich, Gewährleistungsansprüche ausschließlich auf die vom Hersteller angebene Brauchbarkeitsdauer zu begründen.

Für Spezialanwendungen, sowie für Solar- und Off-Grid-Anwendungen wird die erwartete Brauchbarkeitsdauer stark von den oben genannten Betriebsfaktoren beeinflusst. Um entscheiden zu können, ob ein Batteriefehler durch Herstellungsfehler oder durch den Betrieb entstanden ist, müssen die oben genannten Parameter regelmäßig aufgenommen und gesichert werden. Diese Daten müssen dem Hersteller zur weiteren Analyse weitergeleitet werden.

HOPPECKE empfiehlt die Nutzung eines stationären Batterie-Monitoring-Systems zur Überwachung und Protokollierung von kritischen Daten. Bitte wenden Sie sich an Ihren örtlichen HOPPECKE Vertreter für weitere Informationen zu Batterie-Monitoring-Systemen und Zubehör.

8 Batteriepflege

Regelmäßige Pflege und Wartung Ihrer Batterieanlage ist unabdingbar für die geforderte Zuverlässigkeit und Langlebigkeit. Art und Umfang der Wartungsarbeiten sowie alle Messergebnisse sollten Sie möglichst gut dokumentieren. Die Aufzeichnungen können sehr hilfreich bei einer eventuellen Fehlersuche sein und sind die Voraussetzung für die Inanspruchnahme eventueller Gewährleistungsansprüche.

Auch bei Einsatz von AquaGen® Rekombinationssystemen sind die hier beschriebenen Wartungsund Pflegearbeiten durchzuführen. Dazu gehört auch die Kontrolle und ggf. das Ausgleichen der Elektrolytstände in den Batteriezellen.

8.1 Halbjährlich durchzuführende Arbeiten

Führen Sie folgende Messungen durch und zeichnen Sie die Messwerte auf:

- 1. Spannung des gesamten Batteriesystems (im Ladeerhaltungsbetrieb);
- 2. Einzelspannung einiger Zellen bzw. Blockbatterien (im Ladeerhaltungsbetrieb):
- 3. Elektrolytdichte einiger Zellen bzw. Blockbatterien (ca. 20%):
- 4. Elektrolyttemperatur einiger Zellen bzw. Blockbatterien;
- 5. Elektrolytstand der Zellen;
- 6. Raumtemperatur.

8.2 Jährlich durchzuführende Arbeiten

Führen Sie folgende Messungen durch und zeichnen Sie die Messwerte auf:

- 1. Spannung des gesamten Batteriesystems (im Ladeerhaltungsbetrieb);
- 2. Einzelspannung aller Zellen bzw. Blockbatterien (im Ladeerhaltungsbetrieb);
- 3. Elektrolytdichte aller Zellen bzw. Blockbatterien;
- 4. Elektrolyttemperatur aller Zellen bzw. Blockbatterien:
- 5. Elektrolytzustand aller Zellen bzw. Blockbatterien;
- 6. Raumtemperatur:
- 7. Sichtkontrolle aller Schraubverbindungen;
- 8. Prüfung aller Schraubverbindungen auf festen Sitz:
- 9. Sichtkontrolle der Batteriegestelle bzw. Batterieschränke;
- 10. Kontrolle der ordungsgemäßen Be- und Entlüftung des Batterieraums.

Weicht die Ladeerhaltungsspannung an einer Zelle um mehr als +0,1 V bzw. -0,05 V vom Mittelwert ab (vgl. Kap. 6.2.5), führen Sie eine Ausgleichsladung als Kontrollmaßnahme durch oder fordern Sie den Kundendienst an.

HOPPECKE empfiehlt die Nutzung eines stationären Batterie-Monitoring-Systems zur Überwachung relevanter Daten. Bitte wenden Sie sich an Ihren örtlichen HOPPECKE Vertreter.

8.3 Reinigen der Batterie

Gefahr!

Eine regelmäßige Reinigung der Batterie ist notwendig, um die Verfügbarkeit und die Einhaltung der Unfallverhütungsvorschriften zu gewährleisten. Die Batterie sollte mindestens einmal im Jahr gereinigt werden. Dabei ist folgendes zu beachten:

- Bei der Batteriereinigung ist eine Schutzbrille und Schutzbekleidung zu tragen. Zur Vermeidung elektrostatischer Aufladung beim Umgang mit Batterien müssen Textilien, Sicherheitsschuhe und Handschuhe einen Oberflächenwiderstand ≤ 10^8 Ohm besitzen.

- Beim Reinigen keine trockenen Putztücher verwenden!

Achtung!

- Die Zellenstopfen oder AquaGen® premium.top Rekombinationssysteme dürfen für die Reinigung nicht abgenommen oder geöffnet werden

Gefahr!

- Das AquaGen® premium.top Rekombinationssystem ist wie die Zell-/Blockgefäße der Batterien mit einem leicht feuchten Baumwoll- oder Papiertuch zu reinigen. Hinweis: Während der Batterieladung – insbesondere bei Starkladungen – können die AquaGen® -Gehäuse heiss werden. Eine Reinigung sollte daher nicht während einer Starkladung der Batterie erfolgen.
- Die Kunststoffteile der Batterie, insbesondere der Zellengefäße, dürfen nur mit Wasser bzw. wassergetränkten Putztüchern ohne Zusätze gereinigt werden.
- Nach dem Reinigen ist die Batterieoberfläche mit geeigneten Mitteln zu trocknen, z.B. mit wasserfeuchten antistatischen Putztüchern (z.B. Baumwolle).

Hinweis: In OSP.HC und OSP.XC Zellen können sich auf der Innenseite des Zellgefässes Schlieren bilden. Diese Ablagerungen finden sich vorrangig im Bereich der Elektrolytoberfläche. Ursache sind Additive die als Antioxidanzmittel im Separatormaterial das Plastikmaterial des Separators schützen. Es lässt sich nicht vermeiden, dass geringe Mengen dieses Additivs über Zeit ausgeschwemmt werden und ablagern. Dieses Phänomen hat weder negativen Einfluss auf die elektrischen Leistungsdaten der Batterie noch auf die Brauchbarkeitsdauer.

9 Batteriesystem prüfen

9.1 Durchführung der Kapazitätsprüfung (Kurzform)

Bei Prüfungen ist nach EN 60896–11 "Ortsfeste Blei-Akkumulatoren - Teil 11: Geschlossene Batterien; Allgemeine Anforderungen und Prüfverfahren" vorzugehen. Sonderprüfanweisungen, z.B. nach DIN VDE 0100-710 und DIN VDE 0100-718 sind darüber hinaus zu beachten.

Nachfolgend finden Sie in Kurzform die Vorgehensweise zum Prüfen der tatsächlich vorhandenen Kapazität Ihres Batteriesystems. Bitte beachten Sie aber auch alle Hinweise in Kap. 9.2.

Wir empfehlen, vor der Prüfung eine Ausgleichsladung an dem Batteriesystem durchzuführen, wie in Kap. 6.2.5 beschrieben.

Diese Ausgleichsladung sollte längstens 7 Tage zurückliegen und wenigstens 3 Tage!

- 1. Stellen Sie sicher, dass alle Verbindungen sauber, fest und nicht korrodiert sind.
- 2. Messen und notieren Sie während des normalen Batteriebetriebs folgende Parameter:
- Elektrolytdichte,
- Spannung einer jeden Zelle (bzw. Blockbatterie),
- Temperatur von mindestens jeder zehnten Zelle (Blockbatterie),
- Spannung des Gesamtbatteriesystems.
- 3. Unterbrechen Sie die Verbindung des zu messenden Batteriesystems zum Ladegerät und zu allen Verbrauchern!
- 4. Bereiten Sie eine einstellbare Last vor, die Sie an das Batteriesystem anschließen können. Der Laststrom muss dem maximal zulässigen Strom entsprechen, für den die Batterie ausgelegt ist.
- 5. Stellen Sie einen Shunt bereit, den Sie in Reihe mit der Last schalten können.
- 6. Stellen Sie ein Voltmeter bereit, damit Sie die Gesamtspannung der Batterie messen können.
- 7. Schließen Sie die Last, den Shunt und das Voltmeter an. Starten Sie zeitgleich eine Zeitmessung.
- 8. Halten Sie den Laststrom konstant und messen Sie in regelmäßigen Zeitabständen die Spannung des Batteriesystems.
- 9. Prüfen Sie die Zellenverbinder (Blockverbinder) auf unzulässig hohe Erwärmung.
- 10. Berechnen Sie die Kapazität des Batteriesystems mit folgender Gleichung: Kapazität [% bei 20 °C] = $(T_{\star}/T_{\star}) \times 100$
 - T₌ tatsächliche Entladezeit, bis die zulässige Minimalspannung erreicht wird.
 - T_s = theoretische Entladezeit, bis die zulässige Minimalspannung erreicht wird.
- Schließen Sie das Batteriesystem wieder wie ursprünglich an und führen Sie eine Starkladung durch (vgl. Kap. 5.13).

9.2 Durchführung der Kapazitätsprüfung (ausführliche Fassung)

Vorbereitung

Die beste und die schnellste Methode zur Vorbereitung von Batterien zur Prüfung ist die IU - Lademethode, wie sie auch bei Ausgleichsladungen praktiziert wird. Wegen möglicher Überschreitungen der zulässigen Verbraucherspannungen sind entsprechende Maßnahmen zu treffen, z. B. Abschalten der Verbraucher. Die IU-Kennlinie mit erhöhter Spannung von (2.33 - 2.40 V) x Zellenzahl stellt die gebräuchlichste Ladekennlinie zur Inbetriebnahme der Batterien dar. Die Ladung wird mit einer konstanten Spannung von max. 2,33 V - 2,40 V/Zelle bis zu 48 Stunden durchgeführt. Dabei sollte der Ladestrom nicht höher als 20 A je 100 Ah $\rm C_{10}$ sein. Überschreitet die Elektrolyttemperatur der Zellen/Blöcke den max. Wert von 45 °C, ist das Laden zu unterbrechen oder vorübergehend auf Erhaltungsladen zu schalten, damit die Temperatur absinkt.

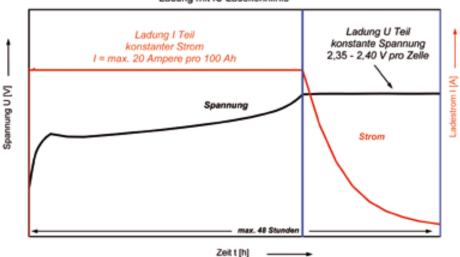


Abb. 9-1: Kennlinie IU

Weitere Kennlinien sind nach W- oder I-Charakteristik möglich.

Die Ladespannungen steigen dabei auf (2,60 bis 2,75 V) x Zellenzahl an. In der Regel müssen deshalb die Verbraucher vorher abgeschaltet werden. Bei der W- oder I-Kennlinie sind die Ladeströme nicht begrenzt bis die Ladespannung die Gasungsspannung von 2,40 V x Zellenzahl erreicht hat.

Danach gelten die folgenden Grenzwerte: Grenzwerte der Ladeströme oberhalb der Gasungsspannung von 2,40 V/Zelle pro 100 Ah...

Ladeverfahren	Ladestrom	Zellenspannung
I-Kennlinie	5,0 A/100 Ah	2,60 - 2,75 V/Zelle
W-Kennlinie	7,0 A/100 Ah 3,5 A/100 Ah	bei 2,40 V/Zelle bei 2,65 V/Zelle

Tab. 9–1: Ladestrom und Zellenspannung in Abhängigkeit vom Ladeverfahren

Während der Aufladung bis 2,40 V darf der Effektivwert des überlagerten Wechselstromes bis zu 10 A/100 Ah $\rm C_{10}$ (kurzzeitig bis zu 20 Ampere/100 Ah $\rm C_{10}$) betragen. Nach dem Wiederaufladen, im Bereitschaftsparallelbetrieb und dem Pufferbetrieb, darf der Effektivwert des überlagerten Wechselstromes 5 A/100 Ah $\rm C_{10}$ nicht überschreiten

Die Nachladezeit beträgt 6–8 Stunden. Die Ladung ist zu überwachen und nach Beendigung abzuschalten oder auf die Ladeerhaltungsspannung umzuschalten.

Der Vollladezustand ist erreicht, wenn die Ladeströme/Ladespannungen (je nach Ladeverfahren) und die Elektrolytdichten innerhalb von 2 Stunden nicht mehr ansteigen

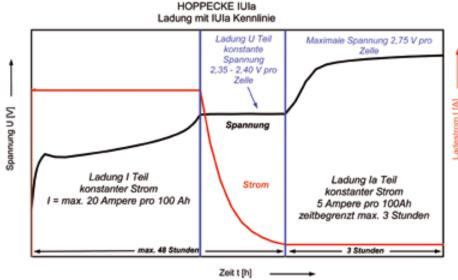


Abb. 9-2: Kennlinie IUI

Eine noch bessere Lademethode zur Vorbereitung der Batterien ist die IUI_a Lademethode als eine Ladung mit einem zusätzlichen Konstantstrom-Ladeschritt. Im Unterschied zur Ladung mit konstanter Spannung wird im letzten Schritt nach dem Ablauf der IU Ladung ein konstanter Ladestrom mit 5 A/100 Ah für 3 Stunden aufgeschaltet. Dabei kann die Ladespannung von bis zu 2,60 bis 2,75 V pro Zelle ansteigen. Aufgrund der starken Gasentwicklung bei der W-, I- oder IUI_-Kennlinie, ist eine verstärkte Belüftung erforderlich.

9.3 Kapazitätsprobe der Batterie

Notwendiges Zubehör:

- Geeignete elektronische Last oder elektrischer Widerstand (mit einstellbarem Widerstandswert, um den Entladestrom/die Entladelast anzupassen).
- Geeignete Stromzange mit ausreichender Genauigkeit zur Messung des Gleichstroms oder Shunt zur Messung des Entladestroms.
- Spannungsmessgerät zur Messung der elektrischen Spannung.
- Thermometer zur Prüfung der Batterietemperatur.
- Uhr zur Messung der Entladezeit.
- Projektierungsdatentabelle zur Auswahl des richtigen Entladestroms bzw. der Entladeleistung.
- Säuredichtemesser für geschlossene Batterien mit einem Messbereich von 1,10 kg/l 1,29 kg/l.

Die Entladung der Batterie wird entsprechend den Vorschriften zur Durchführung der Kapazitätsprüfungen DIN EN 60896–11 ausgeführt. Der Entladestrom und die Entladeleistung werden entsprechend den Projektierungsdatentabellen bis zu einer bestimmten Entladeschlussspannung und der gegebenen Möglichkeit der vorhandenen Lasten ausgewählt.

Anforderungen an die Genauigkeit der Messgeräte (Genauigkeitsklasse):

Für Spannungsmessung:	0,5
Für Strommessung:	0,5
Für Temperaturmessung:	1 °C
Für Zeitmessung:	1%
Säuredichte (nur bei geschlossenen Batterien):	0,005 kg/l

Tab. 9-2: Anforderung an die Genauigkeit der Messgeräte

Bei der Kapazitätsprobe sollten nach dem Verstreichen von je 10% der Entladezeit der Entladestrom bzw. die Entladeleistung, Temperatur, Batteriespannung sowie die Zellen- bzw. Blockspannung und die Entladezeit aufgezeichnet werden. Auf jeden Fall sind jedoch die Werte bei 10%, 50%, 80% und 95% der Entladezeit aufzuzeichnen. Die Entladung ist zu beenden, wenn die Batteriespannung den Wert n x U_r erreicht hat, wobei n die Anzahl der Zellen ist und Uf die ausgewählte Entladeschlussspannung pro Zelle.

Die Entladung ist ebenfalls zu beenden, sobald eine Zelle eine Spannung von U = $U_r - 200$ mV erreicht hat oder bei Blockbatterien mit je n Zellen, sobald die Spannung eines Blocks U = $U_r - \sqrt{n}$ x 200 mV erreicht hat.

Beispiel:

13 Zellen 12 GroE 300

5 h - Kapazitätstest

Endspannung der Batterie = 23,40 V (bei 13 Zellen)

Durchschnittliche Spannung pro Zelle = 1,80 V

Minimale Endspannung einzelner Zellen = 1,60 V

Zellennummer	Fall A	Fall B	Fall C
1	1,84	1,84	1,79
2	1,83	1,86	1,80
3	1,83	1,87	1,81
4	1,84	1,87	1,80
5	1,84	1,86	1,81
6	1,85	1,86	1,79
7	1,69	1,87	1,78
8	1,84	1,86	1,80
9	1,83	1,59	1,81
10	1,85	1,84	1,81
11	1,84	1,85	1,80
12	1,84	1,85	1,79
13	1,85	1,85	1,79
Batteriespannung	23,77 V	23,87 V	23,38 V

Tab. 9-3: Gemessene Zellenspannungen und Gesamtspannung nach 95% der geforderten Entladezeit

Fall A: Eine "schwache Zelle", Kapazitätsprobe bestanden, Batterie i.O.

Fall B: Eine Zelle fehlerhaft, Kapazitätsprobe nicht bestanden, Batterie nicht i.O.

Fall C: Alle Zellen i.O., Kapazitätsprobe nicht bestanden, Batterie nicht i.O.

Unmittelbar nach der Kapazitätsprobe muss die Batterie aufgeladen werden.

Die gemessene Kapazität C (Ah) bei der durchschnittlichen Anfangstemperatur ϑ wird als Produkt aus dem Entladestrom (in Ampere) und der Entladezeit (in Stunden) berechnet.

Da die Batteriekapazität von der Temperatur abhängt, ist eine Temperaturkorrektur der gemessenen Batteriekapazität durchzuführen.

Zu höheren Temperaturen als 20 °C Nominaltemperatur hin steigt die Batteriekapazität, während zu niedrigeren Temperaturen hin die Kapazität fällt. Wenn die durchschnittliche Anfangstemperatur ϑ von der Bezugstemperatur 20 °C abweicht, muss die Kapazität korrigiert werden. Daher wird die Anfangstemperatur zur Temperaturkorrektur entsprechend der Norm DIN EN 60896-11 entsprechend der Gleichung [1] durchgeführt:

$$C_a = \frac{C}{1 + \lambda (\vartheta - 20 \, ^{\circ}C)}$$
 [1]

C = gemessenen Kapazität

 λ = Korrekturfaktor (mit λ = 0,006 bei Entladungen >3 h und λ = 0,01 bei Entladungen \leq 3 h)

 ϑ = Anfangstemperatur

C = korrigierte Kapazität

Entsprechend der Norm DIN EN 60896-11 hat die Batterie die Kapazitätsprobe bestanden, wenn bei der ersten Kapazitätsprobe 95% der geforderten Leistung erreicht werden. Nach der 5ten Entladung müssen 100% der Leistung erreicht werden.

Nach der Entladung ist ein Protokoll anzufertigen (siehe Prüfprotokoll).

Während des Umgangs mit Batterien (z.B. Kapazitätsprobe) müssen die Sicherheitsanforderungen gemäß IEC 62485-2 (isolierte Werkzeuge, Augenschutz, Schutzkleidung, Handschuhe, Belüftung usw.) eingehalten werden!

10 Störungsbeseitigung

Werden Störungen an der Batterie oder der Ladeeinrichtung festgestellt, ist unverzüglich der Kundendienst anzufordern. Messdaten entsprechend Kap. 8.1 vereinfachen die Fehlersuche und die Störungsbeseitigung. Ein Service-Vertrag mit uns erleichtert das rechtzeitige Erkennen von

11 Notwendige Belüftung bei Wasserstoffentwicklung der Batterien

Ausschlaggebend für die Berechnung der notwendigen Sicherheitsbelüftung, um kein gefährliches Gasgemisch aus Wasserstoff und Sauerstoff (Wasserstoffanteil ca. 4%) zu erhalten, ist die VDE 0510 Teil 2 oder IEC 62485-2.

Die Basis für die Gleichung gibt die maximal zulässige Wasserstoffkonzentration in der Luft von 4% und der Sicherheitsfaktor von Faktor 5 vor. Entsprechend lässt sich die Gleichung herleiten:

$$v = \frac{100\% - 4\%}{4\%}$$
 (Verdünnungsfaktor bei maximal zulässiger Wasserstoffkonzentration)
$$q = 0.42 \times 10^{-3} \frac{m^3}{Ah}$$
 (entwickelte Wasserstoffmenge pro eingeladene Ah Kapazität)
$$s = 5$$
 (Sicherheitsfaktor)
$$v \times q \times s = 0.05 \frac{m^3}{Ah}$$

Daraus ergibt sich die Gesamtgleichung für die notwendige Belüftung [in m³/h]:

$$\begin{array}{ll} Q_{air} &= 0,05 \times n \times I_{gas} \times C_{N} \times 10^{-3} \\ I_{gas} &= I_{float} \times f_{g} \times f_{s} \ bzw. \ I_{gas} = I_{boost} \times f_{g} \times f_{s} \\ O &= pottwendige \ Belüffung/Luffdurchsatz (in m³/h) \end{array}$$

Q_{ok} = notwendige Belüftung/Luftdurchsatz [in m³/h]

n = Anzahl der Zellen

= Anteil des Ladestroms [in mA/Ah], der zur Wasserzersetzung beim Ladeerhaltungsbetrieb pro 1 Ah Nominalkapazität der Batterie fließt = 1 mA/Ah

Incret = Anteil des Ladestroms [in mA/Ah], der zur Wasserzersetzung beim Starkladebetrieb pro 1 Ah Nominalkapazität der Batterie fließt = 4 mA/Ah

= Nominalkapazität der Batterie (C₁₀-Kapazität).

= Gasemissionsfaktor (Anteil des Ladestroms, der für die Wasserstoffbildung verantwortlich ist) = 1

= Sicherheitsfaktor, der die Fehlermöglichkeiten einer beschädigten Zelle (möglicher Kurzschluss) und die Alterung der Batterie einschließt = 5

56

Beispiel 1:

Eine Batterie mit 2 x 60 V (60 V Nominalspannung), 4 OPzS 200 (200 Ah) entspricht 2 x 30 Zellen. Die Batterie ist im Ladeerhaltungsbetrieb bei 2.23 V pro Zelle.

$$\begin{array}{lll} C_{_{N}} &= \text{Nominalkapazit\"{a}t} \ \text{der Batterie} = 200 \ \text{Ah} \\ n &= \text{Anzahl der Zellen} = 2 \ \text{x} \ 30 \ \text{Zellen} \\ f_{_{g}} &= \text{Gasemissionsfaktor} = 1 \\ f_{_{s}} &= \text{Sicherheitsfaktor} = 5 \\ I_{_{noat}} &= 1 \ \text{mA/Ah} \\ Q_{_{air}} &= 0.05 \ \underline{m^{_{3}}} \ \text{x} \ 2 \ \text{x} \ 30 \ \text{Zellen} \ \text{x} \ 1 \ \underline{mA} \ \text{x} \ 200 \ \text{Ah} \ \text{x} \ 1 \ \text{x} \ 5 \ \text{x} \ 10^{_{3}} \\ Q_{_{air}} &= 3 \ \underline{m^{_{3}}} \\ \end{array}$$

Ergebnis: Eine Belüftung mit 3 m³/h Luftdurchsatz ist für eine Batterie mit 60 V, bestehend aus 2 x 30 Zellen 4 OPzS 200 beim Ladeerhaltungsbetrieb notwendig.

Welchen Durchmesser sollten die Zuluft- und Abluftöffnungen besitzen bei natürlicher Ventilation?

Der notwendige Querschnitt der Belüftungsöffnungen lässt sich nach folgender Gleichung berechnen:

$$\begin{array}{lll} A & = Q_{air} \ x \ 28 \\ Q_{air} & = notwendige \ Belüftung/Luftdurchsatz \ [in \ m^3/h] \\ A & = notwendiger \ Querschnitt \ der \ Belüftungsöffnungen \ [in \ cm^2] \\ A & = 3 \ \underline{m^3} \ x \ 28 = 84 \ cm^2 \end{array}$$

Ergebnis: Eine Belüftung mit 3 m³/h Luftdurchsatz kann durch Belüftungsöffnungen (Zuluft und Abluft) mit einem Querschnitt von 84 cm² gewährleistet werden.

Was ist bei der Installation der natürlichen Ventilation zu beachten?

Die Belüftungsöffnungen sollten möglichst an gegenüberliegenden Wänden angebracht werden bzw., wenn sie an den gleichen Wänden angebracht sind, einen Mindestabstand von 2 m aufweisen.

12 Demontage

Bei der Demontage einer Batterieanlage sind alle in diesem Dokument aufgeführten Sicherheitshinweise zu berücksichtigen (siehe Kap. 0, 1 und 2). Dazu gehört insbesondere auch die persönliche Schutzausrüstung, Sicherheitsbekleidung und der Einsatz isolierten Werkzeugs.

Gehen Sie in folgenden Schritten vor:

- Vor Beginn der Demontage die Zuleitungen freischalten (Lasttrenner, Sicherungen, Schalter). Durchführung durch schaltberechtigtes Personal. Prüfen Sie, ob die Batterie von allen Ladeeinrichtungen und Verbrauchern
- Sollte sich der Elektrolytstand durch mangelhafte Wartung nicht bei der Max-Markierung befinden, muss der Elektrolytstand vor weiteren Demontagearbeiten auf Max-Markierung eingestellt werden.
- Wenn die Batterieanlage mit HOPPECKE AquaGen® premium.top Rekombinationssystemen oder Keramiktrichterstopfen ausgestattet ist, sind diese entsprechend der zugehörigen Betriebsanleitung zu entfernen und die Zellen/Blöcke mit demineralisiertem Wasser bis zur Max.-Markierung aufzufüllen. Die Öffnungen der Batteriezellen/Blöcke sind anschließend mit den Original Bajonettstopfen mit eingesetzten Labyrinth-Einsätzen zu verschliessen.
- Bei Batterieanlagen mit Nennspannung > 60 V zuerst die Gruppen-/Etagenverbinder entfernen, um die Batterieanlage in kleinere Teilspannungen aufzuteilen. Gelöste Verbinder und Polschrauben unmittelbar von der Batterie entfernen. Beim Lösen der Schrauben keine Akkuschrauber verwenden.
- Entfernen Sie die Verbinder zwischen den Zellen / Blöcken. Es ist darauf zu achten, dass gelöste Verbinder und Polschrauben unmittelbar von der Batterie zu entfernen sind. Beim Lösen der Schrauben keine Akkuschrauber
- Achten Sie darauf, dass die Batteriezellen/Blöcke jederzeit während Ausbau, Verpackung und Transport senkrecht stehend ausgerichtet sind. Vermeiden Sie jegliche Schräglage der Batteriezellen/Blöcke.
- Die Zellen/Blöcke sind für den Transport entsprechend ADR 598B zu verpacken. Äußerlich beschädigte Zellen müssen separat (z.B. in einer Paloxe) verpackt und transportiert werden. Siehe auch Kap. 1.4.

Batterie/Batterienummer:			Auftrags	Auftragsnummer:					Ė
geprüft durch:			Abteilung:	99					
Prüfausrüstung:			Datum:						
Entladezeit [Min]									
Entladestrom I [A]									
Entladeleistung P [W]									
Temperatur T [°C]									
Gesamtspannung der Batterie U [V]									
									,
Nr. Hersteller-Nr.			Zellenspanr	Zellenspannung U [V] / Blockspannung U [V]	Blockspann	ung U [V]			
01									
02									
03									
04									
02									
90									
20									
80									
60									
10									
11									
12									
13									
14									
15									
16									
17									
18									

Prüfproto

Montage-, Inbetriebsetzungs- und Gebrauchsanleitung für geschlossene ortsfeste Blei-Säure-Batterien 7140203150 V1.4 (09.2018)

Batterien

ZVEI Merkblatt Nr. 1

Ausgabe September 2012

Hinweise zum sicheren Umgang mit Bleiakkumulatoren (Bleibatterien)

Die REACH-Verordnung (1907/2006/EC) hat die EU-Richtlinie zu Sicherheitsdatenblättern (91/155/EU) abgelöst. Die gültige REACH-Verordnung fordert die Erstellung und Aktualisierung von Sicherheitsdatenblättern für Stoffe und Zubereitungen. Für Erzeugnisse/Produkte wie Bleibatterien - sind nach europäischem Chemikalienrecht keine EU-Sicherheitsdatenblätter erforderlich.

Dieses Merkblatt wendet sich an Batterieanwender und erfolgt auf freiwilliger Basis.

Die Hinweise geben Hilfestellung für die Einhaltung gesetzlicher Vorgaben, ersetzen diese aber nicht.

Stoff / Zubereitungs- und Firmenbezeichnung

Angaben zum Produkt Handelsname

Bleibatterie, gefüllt mit verdünnter Schwefelsäure

Angaben zum Hersteller:

Anschrift, Telefon, Telefax usw.

2. Gefahrstoffe

CAS-Nr.	Bezeichnung	Gehalt	R-Sätze
7439-92-1	metallisches Blei		-
7439-92-1	Bleilegierungen Spuren As, Sb	34 Gew. %	-
	bleihaltige Batteriepaste	31 Gew. %	R 61-20/22-33- 62-52/53
7664-93-9	Schwefelsäure	34 Gew. %	R 35

3. Mögliche Gefahren

Bei bestimmungsgemäßem Gebrauch und unter Beachtung der Gebrauchsanweisung geht von Bleibatterien keine besondere Gefährdung aus.

Zu beachten ist jedoch, dass Bleibatterien:

- Schwefelsäure enthalten, die starke Verätzungen
- verursachen kann.

 beim Betrieb und
 insbesondere bei der
 Ladung Wasserstoff- und
 Sauerstoffgas entwickeln,
 die unter bestimmten
 Voraussetzungen eine
 explosive Mischung
 ergeben können.
- eine Eigenspannung besitzen, die ab einer bestimmten Nennspannung bei Berührung zu gefährlichen Körperströmen führen kann.
- Die Norm EN 50272-2 ¹⁾
 enthält
 Sicherheitsanforderungen
 an Batterien und
 Batterieanlagen und
 beschreibt die
 grundsätzlichen
 Maßnahmen zum Schutz
 vor Gefahren, die durch
 elektrischen Strom,
 austretende Gase und
 Elektrolyt hervorgerufen
 werden.

Dieses Merkblatt wurde vom Fachausschuss Umweltschutz und Gesundheit im ZVEI – Zentralverband Elektrotechnik- und Elektronikindustrie e. V., Fachverband Batterien, erarbeitet 1 ersetzt durch: IEC 62485-2

Bleibatterien sind durch folgende Warnsymbole¹⁾ gekennzeichnet:

Nicht rauchen, keine offenen Flammen. keine Funken no smoking, no naked flames, no sparks

Schutzbrille tragen Shield eyes

Batteriesäure Battery acid

Bedienungsanleitung beachten Note operating instructions

Explosives Gasgemisch Explosive gas

Maßnahmen bei unbeabsichtigter Freisetzung

Verfahren zur Reinigung / Aufnahme:

Verschüttete Säure mit Bindemittel - z. B. Sand - festlegen.

Neutralisation mit Kalk / Soda. unter Beachtung der amtlichen örtlichen Bestimmungen entsorgen,

nicht in die Kanalisation. ins Erdreich oder in Gewässer gelangen lassen.

4. Erste-Hilfe Maßnahmen

Allgemeine Hinweise:

Schwefelsäure	wirkt ätzend und gewebezerstörend
nach Hautkontakt	mit Wasser abspülen, benetzte Kleidung ausziehen und waschen
nach Einatmen von Säurenebeln ²⁾	Frischluft atmen
nach Augenkontakt 2)	unter fließendem Wasser mehrere Minuten spülen
nach Verschlucken 2)	sofort reichlich Wasser trinken Aktivkohle schlucken
Bleihaltige Batteriepaste	ist als fortpflanzungs- gefährdend eingestuft.
nach Hautkontakt	mit Wasser und Seife reinigen

nach Hautkontakt

Handhabung und Lagerung

Unter Dach frostfrei lagern; Kurzschlüsse vermeiden.

Kunststoffgehäuse vor direkter Sonneneinstrahlung schützen.

Bei großen Mengen Absprache mit örtlichen Wasserbehörden.

Sollten Batterien in Lagerräumen geladen werden, unbedingt Gebrauchsanweisung beachten

Bei Arbeiten an Batterien sind Schutzbrille und elektrostatisch leitende Schutzkleidung und Sicherheitsschuhe zu tragen.

Maßnahmen zur Brandbekämpung

Geeignete Löschmittel:

Bei Elektrobränden im Allgemeinen ist Wasser das geeignete Löschmittel. Bei Entstehungsbränden ist das Löschen mit CO₂ die effektivste Lösung. Die Feuerwehr ist so geschult, dass bei Elektrobränden (bis 1 kV) beim Löschen mit Sprühstrahl ein Abstand von 1 m und beim Löschen mit Vollstrahl ein Abstand von 5 m einzuhalten ist. Beim Löschen von Elektrobränden in Anlagen mit Spannungen > 1 kV gelten je nach Spannungshöhe andere Abstände, Für Löscharbeiten an Photovoltaik-Anlagen gelten andere Regeln.

Ungeeignete Löschmittel:

Das Löschen mit Pulverlöschern ist nicht geeignet, u.a. wegen der Ineffektivität, des Risikos und der möglichen Kollateralschäden.

Besondere Schutzausrüstung:

Für größere stationäre Batterieanlagen oder größere Lagermengen: Augen-, Atem- und Säureschutz sowie säurefeste Kleidung.

Expositionsbegrenzung und persönliche Schutzausrüstung

- 8.1 Keine Exposition durch Blei und bleihaltige Batteriepaste
- 8.2 Möglichkeit der Exposition durch Schwefelsäure und Säurenebel beim Befüllen und Laden

CAS-Nr.	7664-93-9
R-Sätze	
R – 35	verursacht schwere Verätzungen
S-Sätze	
S – 1/2	Unter Verschluss und für Kinder unzugänglich aufbewahren
S – 26	Bei Berührung mit den Augen gründlich mit Wasser spülen und Arzt aufsuchen
S – 30	Niemals Wasser hinzugießen (gilt nur für konzentrierte Säure, nicht für das Nachfüllen von Batterien mit Wasser)
S – 45	Bei Unfall und Unwohlsein sofort Arzt hinzuziehen
Luftgrenzwert am Arbeitsplatz	0,1 mg/m³ (E)
Gefahrensymbol	C, ätzend
Persönliche Schutz	ausrüstung: Gummi-, PVC-Handschuhe, Säureschutzbrille, Säureschutzkleidung, Sicherheitsschuhe

Physikalische und chemische Eigenschaften

Blei

Erscheinungsbild:

Form: Feststoff Farbe: grau Geruch: geruchlos Sicherheitsrelevante Daten Erstarrungspunkt: 327 °C Siedepunkt: 1740 °C Löslichkeit in Wasser (25 °C): gering (0,15 mg/l) Dichte (20°C): 11,35 g/cm3

Schwefelsäure (30 - 38.5 %)

Erscheinungsbild: Form: Flüssiakeit Farbe: farblos Geruch: geruchlos Sicherheitsrelevante Daten Erstarrungspunkt: $-35 \text{ bis} - 60^{\circ}\text{C}$

Siedepunkt: ca. 108 - 114 °C Löslichkeit in Wasser (25 °C): vollständig

Dichte (20 °C): 1,2 - 1,3 g/cm3

10. Stabilität und Reaktivität der Schwefelsäure (30 - 38.5%)

Ätzende, nicht brennbare Flüssigkeit

- Thermische Zersetzung bei 338 °C
- Zersetzt organische Stoffe wie Pappe, Holz, Textilien
- Reaktion mit Metallen unter Bildung von Wasserstoff
- heftige Reaktionen mit Laugen und Alkalien

11. Angabe zur Toxikologie der Inhaltsstoffe

Schwefelsäure

wirkt stark ätzend auf Haut und Schleimhäute.

Bei Aufnahme von Nebeln sind Schädigungen der Atemwege möalich.

Blei und bleihaltige **Batteriepaste**

können bei Aufnahme in den Körper Blut, Nerven und Nieren schädigen. bleihaltige Batteriepaste ist fortpflanzungsgefährdend.

12. Angabe zur Ökologie der Inhaltsstoffe

Vorbemerkung: Relevanz nur bei Freisetzung durch Zerstörung der Batterie

Schwefelsäure

Wassergefährdende Flüssigkeit im Sinne des Wasserhaushaltsgesetzes (WHG) Wassergefährdungsklasse: 1 (schwach wassergefährdend)

Wie in Abschnitt 6 beschrieben ist die freigesetzte Säure mit Bindemittel - z. B. Sand festzulegen oder mit Kalk / Soda zu neutralisieren und unter Beachtung der amtlichen örtlichen Bestimmungen zu entsorgen. Nicht in die Kanalisation, ins Erdreich oder in Gewässer gelangen lassen.

Blei und bleihaltige **Batteriepaste**

Sind schwer wasserlöslich Im sauren oder alkalischen Milieu kann Blei gelöst werden.

Zur Eliminierung aus dem Wasser ist eine chemische Flockung erforderlich.

Bleihaltiges Abwasser darf nicht unbehandelt abgegeben werden.

2/5 3/5

¹⁾ Die Warnsymbole entsprechen der europäischen Industrienorm EN 50342/1. Eine Kennzeichnung nach der GHS-CLP-Verordnung ist nicht erforderlich

²⁾ Arzt hinzuziehen.

13. Hinweise zur Verwertung

Die Verkaufsstellen, die Batteriehersteller und -importeure bzw. der Metallhandel nehmen verbrauchte Bleibatterien zurück und führen sie den Blei-Sekundärhütten zwecks Verwertung zu.

Verbrauchte Bleibatterien unterliegen nicht den Nachweispflichten der deutschen Nachweisverordnung. Sie sind mit dem Recycling/Rückgabesymbol und mit einer durchkreuzten Mülltonne gekennzeichnet. (Siehe auch unter 15. Kennzeichnung)

Verbrauchte Bleibatterien dürfen nicht mit anderen Batterien vermischt werden, um die Verwertung nicht zu erschweren.

Keinesfalls darf der Elektrolyt, die verdünnte Schwefelsäure unsachgemäß entleert werden, dieser Vorgang ist von den Verwertungsbetrieben durchzuführen.

14. Transportvorschriften

14.1 Batterien, nass, gefüllt mit Säure

Land-Transport (Straße /Schiene) gem. ADR/RID - Sondervorschrift 598:

kein deklarierungspflichtiger Gefahrguttransport (neue und gebrauchte Batterien unterliegen nicht den übrigen Vorschriften des ADF/RID, wenn die Bedingungen gem. Sondervorschrift 598

a. Neue Batterien, wenn:

eingehalten werden:

- sie gegen Rutschen, Umfallen und Beschädigung gesichert sind;
- sie mit Trageeinrichtungen versehen sind, es sei denn, sie sind z.B. auf Paletten gestapelt;
- sie außen keine gefährlichen Spuren von Laugen oder Säuren aufweisen;

- sie gegen Kurzschluss gesichert sind.
- b. Gebrauchte¹ Batterien, wenn:
- ihre Gehäuse keine Beschädigung aufweisen;
- sie gegen Auslaufen, Rutschen, Umfallen und Beschädigung gesichert sind, z. B. auf Paletten gestapelt;
- sie außen keine gefährlichen Spuren von Laugen oder Säuren aufweisen;
- sie gegen Kurzschluss gesichert sind.
- Werden die Bedingungen der Sondervorschrift 598 nicht eingehalten, sind neue und gebrauchte Batterien wie folgt als Gefahrgut zu deklarieren und zu transportieren:
- Klasse: 8
- UN-Nr.: 2794
- Benennung und Beschreibung: BATTERIEN, NASS, GEFÜLLT MIT SÄURE
- Verpackungsgruppe: keiner VG zugeordnet
- Gefahrenkennzeichen: 8
- ADR-Tunnelbeschränkungscode: E

See-Transport gem. IMDG Code

- Klasse: 8
- UN Nr.: 2794
- Richtiger technischer Name: BATTERIEN, NASS, GEFÜLLT MIT SÄURE BATTERIES, WET, FILLED WITH ACID
- Verpackungsgruppe: keiner VG zugeordnet
- Gefahrenkennzeichen: 8
- EmS: F-A. S-B
- Verpackungsanweisung: P801

Luft-Transport gem. IATA-DGR

- Klasse: 8
- UN Nr.: 2794
- Richtige Versandbezeichnung: BATTERIEN, NASS, GEFÜLLT MIT SÄURE
- ¹ »Gebrauchte Batterien« sind solche, die nach normalem Gebrauch zu Zwecken des Recyclings befördert werden

- BATTERIES, WET, FILLED WITH ACID
- Gefahrenkennzeichen: 8
- Verpackungsvorschrift: 870

14.2 Batterien, nass, auslaufsicher

Land-Transport (Straße /Schiene) gem. ADR/RID

- UN Nr.: 2800
- Klasse: 8
- Bezeichnung: BATTERIEN, NASS, AUSLAUFSICHER
- Verpackungsgruppe: keine
- Verpackungsanweisung: P 003
- Gefahrenkennzeichen: 8
- Sondervorschrift 238 Abs. a) + b): kein deklarierungspflichtiger Gefahrguttransport (Auslaufsichere Batterien unterliegen nicht den übrigen Vorschriften des ADR/RID, wenn die Batterien die Kriterien gem. Sondervorschrift 238 erfüllen. Eine entsprechende Herstellererklärung muss vorliegen.
- Batterien welche die Kriterien gem. Sondervorschrift 238 nicht erfüllen, müssen wie 14.1 Land-Transport ADR/RID nach Sondervorschrift 598 verpackt und befördert werden.)

See-Transport gem. IMDG Code

- Klasse: 8
- UN Nr.: 2800
- Bezeichnung: BATTERIEN, NASS, AUSLAUFSICHER BATTERIES, WET, NON-SPILLABLE
- Verpackungsgruppe: keine
- Verpackungsanweisungen: P 003 und PP 16
- Gefahrenkennzeichen: 8

- Sondervorschrift 238

- EmS: F-A. S-B
- Nrn. 1. + 2.: kein deklarierungspflichtiger Gefahrguttransport (Auslaufsichere Batterien unterliegen nicht den übrigen Vorschriften des IMDG, wenn die Batterien die Kriterien gem Sondervorschrift 238

gem. Sondervorschrift 238
Nr.. 1 + 2 erfüllen. Eine
entsprechende Herstellererklärung muss vorliegen.

Batterien welche die Kriterien gem. Sondervorschrift 238 nicht erfüllen, müssen wie 14.1 See-Transport IMDG gem. Verpackungsanweisung P801 verpackt und als Gefahrgut nach UN 2794 befördert werden.)

Luft-Transport gem. IATA-DGR

- Klasse: 8
- UN Nr.: 2800
- Richtige Versandbezeichnung: BATTERIEN, NASS, AUSLAUFSICHER BATTERIES, WET, NON-SPILLABLE
- Verpackungsgruppe: keine
- Verpackungsvorschrift: 872
- Gefahrenkennzeichen: 8
- Sonderbestimmung A 67: kein deklarierungspflichtiger Gefahrguttransport (Auslaufsichere Batterien, welche die Kriterien der Sondervorschrift A67 erfüllen, unterliegen nicht den übrigen

IATA-DGR-Vorschriften.

 Vorausgesetzt: die Pole sind gegen Kurzschluss gesichert. Eine entsprechende Herstellererklärung muss vorliegen. Batterien welche die Kriterien gem. Sonderbestimmung A 67 nicht erfüllen, müssen wie nach 14.1 Luft-Transport IATA-DGR gem. Verpackungsvorschrift 870 verpackt ung als

870 verpackt und als Gefahrgut nach UN 2794 befördert werden.)

14.3 Beschädigte Batterien

Land-Transport (Straße /Schiene) gem. ADR/RID

- Klasse: 8
- UN-Nr.: 2794
- Benennung und Beschreibung: BATTERIEN, NASS, GEFÜLLT MIT SÄURE
- Verpackungsgruppe: keine
- Verpackungsanweisung P 801 a: Gefahrguttransport (Verpackung in Akkukästen) oder Sondervorschrift VV 14: Gefahrguttransport (in loser Schüttung)
- Gefahrenkennzeichen: 8
- ADR-
- Tunnelbeschränkungscode: E
- Anmerkung: Diese Hinweise können auch bei der Beförderung von Bleibatterien der UN-Nr. 2800 angewendet werden.

Zusätzlich erfolgt die Kennzeichnung mit dem ISO Rückgabe/Recycling-Symbol.

Verantwortlich für das Anbringen der Kennzeichnung ist der Batteriehersteller bzw. -Importeur.

Zusätzlich ist eine Information des Verbrauchers/Anwenders über die Bedeutung der Kennzeichen erforderlich; dies verlangen sowohl nach dem zuvor genannten deutschen Batteriegesetz als auch der EU-Batterie-Richtlinie.

Verantwortlich für diese Information sind die Hersteller und Vertreiber der kennzeichnungspflichtigen Batterien (Verpackung, technische Anleitungen, Prospekte).

15. Kennzeichnung

Gemäß deutschem Batteriegesetz sind Bleiakkumulatoren mit einer durchkreuzten Mülltonne und darunter mit dem chemischen Symbol für Blei "Pb" zu kennzeichnen.

16. Sonstige Angaben

Die vorstehenden Angaben stützen sich auf den heutigen Stand der Kenntnisse und stellen keine Zusicherung von Eigenschaften dar. Bestehende Gesetze und Bestimmungen sind vom Empfänger des Produkts in eigener Verantwortung zu beachten.

5/5

ZVEI – Zentralverband Elektrotechnik- und Elektronikindustrie e. V. Fachverband Batterien Lyoner Straße 9

Fon.: +49 69 6302-283 Fax: +49 69 6302-362 Mail: batterien@zvei.org

60528 Frankfurt

www.zvei.org

Trotz größtmöglicher Sorgfalt kann keine Haftung für Richtigkeit, Vollständigkeit und Aktualität übernommen werden

4/5

Fachverband Batterien Postfach 70 12 61 60591 Frankfurt am Main

Lyoner Straße 9

60528 Frankfurt am Main Tel.: (0.69) 63 02-209 Fax: (0.69) 63 02-279 e-mail: batterien@zvel.org

Merkblatt

Sicherheitsdatenblatt für Batteriesäure (verdünnte Schwefelsäure) (gemäß EU Richtlinie 91/155/EWG)

1 Stoff / Zubereitungs- und Firmenbezeichnung

verdünnte Schwefelsäure (1,22 . . . 1,29 kg/l) Angaben zum Produkt:

Handelsname: Batteriesäure

Angaben zum Hersteller:

Telefon: Telefax:

2 Zusammensetzung / Angaben zu den Bestandteilen

Chemische Charakterisierung:

Schwefelsäure: 30 . . . 38,5%ig, Dichte 1,22 . . . 1,29 kg/l (. . . 1,32 kg/l)

CAS-Nummer: 7664-93-9 016-020-00-8 EG-Nummer: UN-Nummer: 2796 EINECS-Nummer: 231-639-5

3 Mögliche Gefahren 4 Erste Hilfe-Maßnahmen

Verdünnte Schwefelsäure kann starke Verätzungen verursachen Allgemeine Hinweise: beschmutzte, getränkte Kleidung

sofort ausziehen

nach Hautkontakt bei Berührung mit der Haut sofort mit viel Wasser abwaschen

nach Einatmen von Säurenebein Frischluft atmen

nach Augenkontakt

unter fließendem Wasser mehrere Minuten spülen nach Verschlucken ") sofort reichlich Wasser trinken,

Aktivkohle schlucken 7 Aut bisouteten.

Dieses Merkblatt wurde vom Fachausschuss "Umweltschutz" des Fachverbandes Batterien im Zentralverband Elektrotechnik- und Elektronikindustrie e.V., ZVEI, erarbeitet

(Revidierte Ausgabe September 2003).

Maßnahmen zur Brandbekämpfung

Geeignete Löschmittel bei Umgebungsbränden: CO₂ und Trockenlöschmittel

Maßnahmen bei unbeabsichtigter Freisetzung

Verfahren zur Reinigung / Aufnahme:

Verschüttete Säure mit Bindemittel - z.B. Sand - festlegen, Neutralisation mit Kalk / Soda, unter Beachtung der amtlichen örtlichen Bestimmungen entsor-

7 Handhabung und Lagerung

Unter Dach frostfrei lagern; bei großen Mengen Absprache mit örtlichen Wasserbehörden, VAWS beachten.

8 Expositionsbegrenzung und persönliche Schutzausrüstung

Möglichkeit der Exposition durch Schwefelsäure und Säurenebel beim Befüllen und Laden:

TRK-West: 0.1 mg/m³ *)

Persönliche Schutzausrüstung: Gummi-, PVC-Handschuhe,

> Säureschutzbrille, Säureschutzkleidung, Sicherheitsschuhe

") Für die Bleibatterieproduktion gilt ein TRK-Wert von 0,5 mg/m³

9 Physikalische und chemische Eigenschaften

Erscheinungsbild

Flüssigkeit Form: Farbe: farblos Geruch: geruchios

Sicherheitsrelevante Daten

Erstamungspunkt: - 35 . . . - 60 °C Siedepunkt: ca. 108 . . . 114 'C Löslichkeit in Wasser: vollständig Flammpunkt: nicht anwendbar Zündtemperatur: nicht anwendbar Untere Explosionsgrenze: nicht anwendbar (1.2 - 1.3) kg/lDichte (20 'C): Dampfdruck (20 °C): 14,6 mbar Schüttdichte: nicht anwendbar pH-Wert: < 1 (bei 20 °C)

Viskosität, dynamisch: ca. 2,8 mPa . s (bei 20 °C)

10 Stabilität und Reaktivität der Schwefelsäure (30 . . . 38,5 %)

- ätzende, nicht brennbare Flüssigkeit
- thermische Zersetzung bei 338 °C
- zersetzt organische Stoffe, wie Pappe, Holz, Textilien
- Reaktion mit Metallen unter Bildung von Wasserstoff
- heftige Reaktionen mit Laugen und Alkalien

11 Angabe zur Toxikologie der Inhaltsstoffe

 wirkt ätzend auf Haut und Schleimhäute schon bei niedrigen Konzentrationen. Bei Aufnahme von Nebeln sind Schädigungen der Atemwege möglich.

12 Angaben zur Ökologie der Inhaltsstoffe

- Wassergefährdende Flüssigkeit im Sinne des Wasserhaushaltsoesetzes (WHG) Wassergefährdungsklasse: 1 (schwach wassergefährdend).
- Zur Vermeidung von Schäden im Abwassersystem muss die Säure mit Kalk oder Soda vor dem Beseitigen neutralisiert werden.
- Ökologischer Schaden durch pH-Veränderung möglich.

13 Hinweise zur Verwertung Entsorgung

 Unter Beachtung der örtlichen behördlichen Bestimmungen verwerten / entsorgen.

14 Transportvorschriften

ADR Landtransport: Kapitel 3.2, UN 2796 RID Kapitel 3.2, UN 2796

Batterieflüssigkeit, sauer Bezeichnung des Gutes:

Gefahrennummer: 80 UN-Nummer: 2796

Seetransport: IMDG-Code Kapitel 3.2, UN 2796

Lufttransport: IATA-DGR Kapitel 4.2, Schwefelsäure

Sonstige Angaben: Postversand (Bundespost) UNZULĀSSIG

GefStoffV:

15 Vorschriften

Kennzeichnung gemäß

Gefahrensymbol

R-Sátze

35 1/2

S-Sátze

26

30

45

zeichnet ist) ⁷ gilt nur für konzentrierte Säure, nicht aber für das Nachfüllen von

3

bei Unfall oder Unwohlsein sofort Arzt hinzuziehen (wenn möglich das Etikett vorzeigen, mit dem das Gut gekenn-

Kennzeichnungspflichtig

verursacht schwere Verätzungen

unter Verschluss und für Kinder unzugänglich aufbewahren

bei Berührung mit den Augen gründlich mit Wasser spülen und Arzt konsultieren niemals Wasser hinzugießen 7

C, ätzend

Batterien mit Wasser

Nationale Vorschriften:

Wassergefährdungsklasse: 1 (Listenstoff)

Sonstige Vorschriften: Bei der Lagerung zu beachten:

Wasserhaushaltsgesetz, VAwS

BG-Merkblatt M004 "Reizende /ätzende Stoffe"

ZH 1/105 "Schutzkleidungsmerkblatt"

16 Sonstige Angaben

Die vorstehenden Angaben stützen sich auf den heutigen Stand der Kenntnisse und stellen keine Zusicherung von Eigenschaften dar. Bestehende Gesetze und Bestimmungen sind vom Empfänger des Produkts in eigener Verantwortung zu beachten.

Notizen:

Notizen:	Notizen:

Montage-, Inbetriebsetzungs- und Gebrauchsanleitung

für geschlossene ortsfeste Blei-Säure-Batterien